
 Abstract III

ABSTRACT

Terrain in flight simulators has traditionally been hand-modelled by artists.
Ericsson Saab Avionics AB uses a hand-modelled terrain over Gotland for
their flight simulator T3SIM. Hand-modelled terrain is expensive and has no
support for continuous level of detail. This paper presents different methods
for automatic terrain generation in real-time based on height data. Several
algorithms have been proposed the past few years. However, only two are
capable of real-time rendering with current demands on quality and speed.
Those are view-dependent progressive meshes (VDPM) and real-time
optimally adapting meshes (ROAM). Although, ROAM restricts the space of
possible meshes, its execution time is proportional to the number of triangle
changes per frame while the execution time of VDPM is only proportional to
the full output mesh size. Some improvements and extensions to ROAM are
presented, including a force-merge approach for merging arbitrary triangles. A
prototype based on ROAM and the extensions has been implemented, which
has shown to reduce the triangle-count compared to traditional methods.

Keywords: terrain, continuous level of detail, multiresolution modelling,
surface simplification, triangulation, triangulated irregular network

IV Acknowledgements

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Krister Dackland at Umeå University
for reading the thesis and giving me valuable comments. I would also like to
thank my supervisors Tomas Stenarsson and Torbjörn Söderman at Ericsson
Saab Avionics AB for assisting me during my work and for reading the paper.
They have also given me valuable comments.

I am grateful to Hugues Hoppe and Mark Duchaineau for answering my
questions about view-dependent progressive meshes and real-time optimally
adapting meshes, respectively.

 Contents V

CONTENTS

1 INTRODUCTION ..1

1.1 BACKGROUND..1
1.2 PROBLEM DESCRIPTION..2
1.3 OUTLINE ...3

2 SURVEY OF TERRAIN-RENDERING ALGORITHMS..5

2.1 REGULAR GRID METHODS..6
2.2 HIERARCHICAL SUBDIVISION METHODS...7
2.3 FEATURE METHODS..7
2.4 REFINEMENT METHODS..7
2.5 DECIMATION METHODS..8
2.6 OPTIMAL METHODS..8

3 PROGRESSIVE MESHES..9

3.1 DEFINITIONS...9
3.2 PROGRESSIVE MESH REPRESENTATION..9
3.3 PROGRESSIVE MESH CONSTRUCTION...10

3.3.1 Energy Function ..10
3.3.2 Merge Tree ..11
3.3.3 Quadric Error Metric ..11

3.4 SELECTIVE REFINEMENT AND COARSENING...11
3.4.1 Legality of Edge Collapse..12

3.5 VERTEX MORPHING..13
3.6 VIEW-DEPENDENT REFINEMENT OF PROGRESSIVE MESHES...14

3.6.1 Overview..14
3.6.2 Selective Refinement Algorithm...15

4 REAL-TIME OPTIMALLY ADAPTING MESHES..17

4.1 DEFINITIONS...17
4.2 ROAM REPRESENTATION..17
4.3 VERTEX MORPHING..18
4.4 TRIANGULATION ALGORITHMS ..19
4.5 QUEUE PRIORITIES..21
4.6 PERFORMANCE ENHANCEMENTS..22

4.6.1 View-Frustum Culling ...22
4.6.2 Incremental triangle stripping...22
4.6.3 Priority-computation Deferral...22
4.6.4 Progressive Optimisation ..22

4.7 COMPARISON TO VDPM...23

5 ROAM ALGORITHM AND IMPLEMENTATION ASPECTS ...24

5.1 SPLIT ALGORITHM..24
5.2 MERGE ALGORITHM ...25
5.3 MAIN ALGORITHM..27
5.4 IMPLEMENTATION ASPECTS..28

5.4.1 Bintree Data Structure...28
5.4.2 Implicit Binary Tree...28
5.4.3 Split and Merge Operations ..28
5.4.4 Split and Merge Queues ..28
5.4.5 View-Frustum Culling ...29
5.4.6 Triangle Count...29

6 RESULTS..30

6.1 PERFORMANCE...31
6.1.1 Frame Rates...31

VI Contents

6.1.2 Function Timing ..32

7 SUMMARY AND CONCLUSION ...33

REFERENCES ..34

APPENDIX A: COMPUTATIONAL GEOMETRY CONCEPTS...A-1

A.1 QUADTREE..A-1
A.2 KD-TREE...A-1
A.3 RANGE TREE...A-2
A.4 VORONOI DIAGRAM ...A-2
A.5 POLYGON TRIANGULATION ..A-4

A.5.1 Partitioning a Simple Polygon into Monotone Pieces...A-4
A.5.2 Triangulating a Monotone Polygon ..A-4

A.6 DELAUNAY TRIANGULATION ..A-5
A.7 DATA-DEPENDENT TRIANGULATION ..A-7

APPENDIX B: USER MANUAL...A-8

APPENDIX C: GLOSSARY ..A-9

 Section 1.1 Background 1

1 INTRODUCTION

A terrain may be defined as the graph of a continuous function f:R2→R [2]. In computer graphics, these
graphs are usually represented by triangle meshes, i.e. connected sets of triangles in which no more than
two triangles share an edge. It is not uncommon that a triangle mesh consists of several millions of
triangles. No graphics workstation of today is capable of rendering such large triangle meshes at
interactive frame rates. Therefore, the triangle count of large triangle meshes has to be reduced without
deteriorating the visual appearance.

Traditional triangle-reduction methods use a small set of discrete levels of detail that each represents
the same object at different number of triangles. Simple visualisation systems compute the distance from
the observer to an object and choose a level of detail for the entire object based on that distance. Other
visualisation systems base the level of detail on the screen-space error of the object. If the distance or
error changes beyond a certain limit, the whole object is rendered with another level of detail.

There are two problems with triangle-reduction methods based on discrete levels of detail. First,
large objects that may have some regions close to the observer and others more distant should be
rendered at different levels of detail for the different regions. Terrain is an example of such an object.
The horizon does not need to be rendered with as high detail as nearby parts. Second, changing from one
level of detail to another leads to temporal aliasing artefacts known as popping. Three methods have
been proposed to reduce the popping effects. A large number of levels of detail could be used. This
reduces the difference between two consecutive levels of detail, but requires large storage space.
Another alternative is to use very complex models with small screen-space errors. Although the
difference between two consecutive levels of detail is large, the visible difference is small. However, this
consumes unnecessary large amounts of rendering power. The last method morphs one level of detail to
another, i.e. it either animates the vertex positions or blends in the new level of detail through several
frames. This is also a computationally expensive task.

Thus, triangle-reduction methods based on discrete level of detail are inadequate for terrain
visualisation. Algorithms that support continuous level of detail address these problems by computing
the appropriate level of detail for every triangle at each frame. Lindstrom et al. [24] give a more precise
definition of continuous level of detail. Many of these algorithms exploit frame coherence to minimise
the difference in triangulation of the terrain in the two frames.

1.1 Background
Ericsson Saab Avionics AB develops T3SIM (Training and Tactical/Technical Development Simulation
System), a software system designed for tactical training in real-time man-in-the-loop air-combat
simulations. Ericsson Saab Avionics AB uses the system in their EPSIM facility, shown in Figure 1.1,
for prototyping, demonstrations, and evaluations in the development process. It is developed in co-
operation with the Swedish Air Force Air Combat Simulation Centre, who uses it for training and
tactical development for various missions and threat scenarios that involve intercept elements [8, 9].

T3SIM is intended to perform multi-player air-combat simulations and supports functionality for
tactical environment with computer-generated platforms, electronic warfare, combat command, and
combat control. The system consists of a core system and five modules: master system control module,
pilot station module, exercise observation and evaluation module, combat command and control module,
and computer-generated forces module. These modules are operated on SGI computer workstations [9].

2 Chapter 1 Introduction

Figure 1.1: A view of the EPSIM facility at Ericsson Saab Avionics AB.

Today, T3SIM is primarily intended to perform air-combat simulations beyond visual range for JAS
39 Gripen. This requires focus on the tactical instruments, flight-data display, horizontal-situation
display, multi-sensor display, and head-up display. Figure 1.2 shows these instruments in the cockpit of
a JAS 39 Gripen aircraft. The flight data display presents basic information such as attitude, speed, and
altitude, while the tactical information is presented on the horizontal situation display by symbols
representing friends, foes, targets, threats, obstacles, and guiding information, all of which is
superimposed on a digital electronic map. The multi-sensor display provides different modes of sensor
information, including air-to-air radar modes. Finally, the head-up display provides information for
navigation and weapons control. It simulates a holographic diffraction optics combiner that presents the
information within the pilot’s field of view. Since the tactical instruments are the main information
providers, the visual presentation of surrounding environment has been lower prioritised [7, 9].

1.2 Problem description
Future versions of T3SIM will include air-to-air and air-to-land combat simulations within visual range.
This increases the requirements of the visual system. The terrain will play a major role in future
simulations, since air-combat will take place at lower altitudes. Therefore, the system will require two
features not available today:

• Availability to simulate terrain for any region in Sweden and other countries of interest.
• Support of high-quality terrain during low-altitude flights at constant frame rates.

The first requirement enables air-combat training in any region for which height and map data is
available, while the second requires terrain rendered with continuous level of detail.

The terrain used today is a hand-made model of Gotland, which is shown in Figure 1.3. Most regions
are only modelled as a flat landscape of a coarse triangle mesh textured with flight photographs. While
this is acceptable for high-altitude flights, it does not provide the visual quality required for future low-
altitude flights.

 Section 1.3 Outline 3

Figure 1.2: On the left is the flight data display, on the middle the horizontal situation
display, on the right the multi-sensor display, and straight ahead is the head-up display.

It has not only been very expensive and time-consuming to build this model; it does also limit the
application to Gotland. In addition, T3SIM lacks support of continuous level-of-detail rendering, which
restricts the terrain to very flat areas. Rougher terrain would require more and smaller underlying
triangles, which are too computationally expensive to render.

A solution to the problems is to develop a program that generates terrain from height and map data.
The National Land Survey of Sweden provides height data in square areas of 50×50 kilometres, stored as
height samples in a regular grid with 50 metres spacing. The map data is stored in layers, each
describing a vegetation type, such as woods and lakes, represented by two-dimensional polygons that
encapsulate the vegetation type. Other map information such as roads is stored as lines. Finally, some
information is described as points, e.g. houses and lighthouses.

This program could read the height samples and map data and, given a position and view direction
of the observer, generate a three-dimensional terrain in real time that the observer would see. This thesis
is restricted to terrain rendering based on height data. The purpose is to investigate the algorithms that
create a triangle mesh that supports continuous level of detail and build a prototype based on one of
these algorithms.

1.3 Outline
Section 2 discusses the requirements of terrain-rendering algorithms and surveys existing algorithms.
The desired properties of these algorithms are documented. The algorithms are categorised into six
groups, each with its own advantages and drawbacks. Two algorithms are found to be candidates for

4 Chapter 1 Introduction

further investigation, view-dependent progressive meshes (VDPM) and real-time optimally adapting
meshes (ROAM). These are covered in Section 3 and 4.

Figure 1.3: A view of the modelled terrain of Gotland in T3SIM.

Section 3 describes progressive meshes in detail. Progressive meshes have been developed by
Hugues Hoppe [17, 18, 19, 20, 21] to produce a triangulated irregular network from a set of height
samples. Progressive meshes have been shown to minimise the number of triangles necessary to
approximate a height field at a given error bound.

Section 4 discusses real-time optimally adapting meshes. ROAM was developed by Duchaineau et
al. [6] in 1997. The triangles are represented hierarchically in a binary tree, which facilitates fast
retrieval of individual triangles and view-frustum culling. The neighbours to each triangle are stored in
every triangle node in order to avoid cracks by force-splitting triangles. Two optimisation methods are
introduced with ROAM, incremental triangle stripping and priority-computation deferral lists.

ROAM has shown to be more suitable for real-time terrain rendering. A prototype has been
developed that implements a version of ROAM. Section 5 discusses the implementation. An algorithm
has been developed that introduces a new, more general, version of the merge operation. This algorithm
is discussed together with other algorithms that control the split and merge process.

Results from the implementation are given in Section 6.

In Appendix A, some fundamental computational geometry definitions and concepts are explained.
Several terrain-rendering algorithms use data types based on quadtrees, kd-trees and range trees. These
are shortly explained together with a time and space complexity summary. Three common triangulation
methods, Delaunay triangulation, data-dependent triangulation, and polygon triangulation are also
covered.

Appendix B presents a short user manual for the prototype that has implemented the ROAM
algorithm together with the improvements and extensions presented in Section 5.

Appendix C contains a glossary of common concepts within the field of computational geometry and
terrain rendering. Only selected words are included.

 Chapter 2 Survey of Terrain-Rendering Algorithms 5

2 SURVEY OF TERRAIN-RENDERING ALGORITHMS
This Section surveys previous efforts in the area of terrain-rendering algorithms based on regular grids
of equally spaced height samples. A terrain-rendering algorithm should maximise the visual quality of
the terrain at interactive frame rates. More specifically, the following properties should be included:

• Support of several levels of detail for different regions of the terrain simultaneously.
• Avoidance of cracks and shading discontinuities between regions of different levels of detail.
• Minimisation of object-space or screen-space error bounds.
• Reduction of popping artefacts.
• Maintenance of strict frame rates.
• Minimisation of the number of rendered triangles.
• Compact representation of the triangle mesh with support of fast retrieval of individual triangles.
• Capability of creating long triangle strips or fans.
• Support of view-frustum, backface and occlusion culling.
• Exploitation of frame-to-frame coherence in order to minimise triangulation time.
• Reduction of execution-time overhead.
• Reduction of memory requirements.

The first four properties improve the visual quality while the latter eight improves the performance.
Most important is support of dynamic continuous level of detail. The level of detail should be based on
both the position of the observer and the structure of the terrain. Distant regions of the terrain will have
less impact on the final visual result because of perspective foreshortening. Unnecessary amounts of
geometry for distant regions are more of a liability than an asset. Not only do such geometry consume
valuable rendering power; it can also produce z-buffer accuracy problems and aliasing artefacts [4].
Thus, distant or flat terrain should be simplified more than nearby or rough terrain.

(a) (b)

Figure 2.1: a) Top view of a regular triangulation of a height field considering neither
view position or terrain structure. b) Top view of a triangulated irregular network
considering both view position and terrain structure.

Common methods divide the terrain into square areas known as tiles, which are stored at a number
of different levels of detail. Nearby tiles are visualised at higher level of detail than distant ones. An
example is illustrated in Figure 2.2 (a).

This does however introduce problems at the boundary of the tiles. Not only are the transitions to
other levels of detail visible for the observer; they also introduce cracks and shading discontinuities
[6, 31]. This can be avoided by ensuring that the projection to the x-y plane of an edge of one triangle
contains no vertices of the projection of other triangles. A common method is to sew the tiles as in

6 Chapter 2 Survey of Terrain-Rendering Algorithms

Figure 2.2 (b). This solution also reduces the visible differences between different levels of detail.
However, the algorithm does not consider the structure of the terrain within each tile. A region within a
tile may need more geometry than the rest of the tile. A tile-based algorithm cannot accomplish this.

(a) (b)

Figure 2.2: a) Subdivision of terrain into tiles. b) The same subdivision, but this time
tiles are sewed at the boundary.

Heckbert and Garland [16] have categorised polygonal-surface approximation algorithms based on a
regular grid of height samples as follows:

• Regular grid methods use a subgrid of equally and periodically spaced height samples from the
original grid.

• Hierarchical subdivision methods are based on quadtrees, kd-trees, and other hierarchical
triangulations. They all use a divide-and-conquer strategy that divides the terrain into smaller
regions in a recursive manner to build a tree structure of the regions.

• Feature methods create a triangulation based on a subset of the vertices that represents the
important features of the terrain.

• Refinement methods are based on a coarse approximation, which is refined and re-triangulated
during multiple passes.

• Decimation methods are based on a triangulation of all vertices, which is simplified and re-
triangulated during multiple passes.

• Optimal methods are included only for their theoretical properties.

The first two categories generate regular triangulations, while the latter four usually produce
triangulated irregular networks. Delaunay and data-dependent triangulation are two common examples
of triangulation methods that produce triangulated irregular networks. Delaunay triangulation
triangulates a set of two-dimensional points by maximising the minimum angle of all triangles, while
data-dependent triangulation methods use the heights of the points to achieve more accurate
triangulations, but they introduce more slivers, i.e. thin triangles. Both Delaunay and data-dependent
triangulation are discussed in more detail in Appendix A.

2.1 Regular Grid Methods
Regular grid subsampling is the simplest surface-simplification algorithm. It samples only the points in
every kth row and column. No other point is considered in the approximation. The produced subset is
then triangulated to a regular mesh. Heckbert and Garland points out that these methods are simple and
fast, but since no consideration is taken to the structure of the terrain or the position of the observer, they
produce terrain of low quality.

Regular grid subsampling can be extended to a multiresolution model by hierarchically producing a
pyramid. These methods are, according to Heckbert and Garland, the most widely used type of
multiresolution terrain model in both the simulation and visualisation community. More sophisticated
methods are necessary to produce triangle meshes that meet the high quality standards of today.

 Section 2.2 Hierarchical Subdivision Methods 7

2.2 Hierarchical Subdivision Methods
Hierarchical subdivision methods divide the terrain recursively into a tree. They are adaptive, which
means that they stop the subdivision according to a set of parameters, such as view-frustum culling and
geometric error. In each step of the subdivision process, the region associated with a node is checked
against the view frustum. If the whole region is outside, the recursion stops at that branch. Otherwise, it
measures the distance from the observer and determines whether the level of detail is high enough. If
more details are necessary, the process continues recursively.

As the regular grid methods, hierarchical subdivision methods are simple and fast, but they also
facilitate multiresolution-modelling [16].

Several hierarchical subdivision methods exist. Miller [26] bases his algorithm on a quadtree, in
which each level is computed by an approximate least-squares fit to the level below. Both a view-
independent component and a more accurate view-dependent screen-space error metric are minimised. A
specified triangle count is guaranteed, but frame-to-frame coherence is not exploited and T-vertices are
allowed.

Lindstrom et al. [24] build pairs of triangles into a hierarchical structure. Each triangle is associated
with another triangle to form pairs of triangles, which are simplified to single triangles by merging the
individual triangles. This is defined recursively, but sets a major constraint on the height data. The grid
must consist of x2 vertices, where x = 2n + 1 for some nonnegative integer n. A geometric screen-space
error metric determines the order of which the triangles are to be merged, but there is no guarantee of
error bounds. There is no triangle-count parameter that maintains strict frame rates, nor is vertex
morphing included [6, 24].

Duchaineau et al. [6] continue the research of Lindstrom et al. by a method called real-time
optimally adapting meshes. They use the same space of continuous triangle-bintree meshes, but
incorporate two priority queues to drive the triangle split and merge process. They do not split the height
data into regular blocks to reduce the problem of cracks between block boundaries as Lindstrom et al.
do. Instead, a sequence of forced splits creates a triangle mesh of continuous level of detail. The same
geometric screen-space error metric is used, but a guarantee of error bounds is included. In addition,
strict frame rates are maintained by setting a maximal number of generated triangles. Vertex morphing is
included in the split and merge process. This method is further discussed in Section 4.

2.3 Feature Methods
Some height samples describe the terrain better than others do. Feature methods exploit this fact by
determining the n most important vertices, which are known as features or critical points. A triangle
mesh is determined from these vertices, usually by some Delaunay or data-dependent triangulation
method. Some methods find important edges known as break lines and incorporate them into the
triangulation [16]. A common algorithm is constrained Delaunay triangulation. For details, see
Appendix A.

Heckbert and Garland conclude that these methods are inferior in comparison to the other methods.

2.4 Refinement Methods
Refinement methods assume that the height samples have already been approximated. During multiple
passes, the approximation is refined by inserting one or more vertices. The triangle mesh is re-
triangulated in each such pass. Simple rectangular grids usually are initially approximated by two large
triangles, while more complex height data need more sophisticated approximation algorithms. The
sequence of vertices to be inserted is usually determined by a measure that computes the distance
between a vertex and the current triangulation, e.g. the vertical distance. A view-dependent extension
computes the projection of the same distance onto the view plane [16].

8 Chapter 2 Survey of Terrain-Rendering Algorithms

2.5 Decimation Methods
A decimation method is the opposite of a refinement method. The decimation approach assumes that an
initial triangulation of all input data already exists, and iteratively simplifies the triangulation by
removing vertices, edges, or triangles [16].

Xia and Varshney [30] have presented a method for performing view-dependent simplification of
general triangulated irregular networks. A merge tree is constructed using edge-collapse operations that
do not affect neighbour triangles. The simplifications are dependent on viewing direction, lighting,
visibility, and include backface-detail reduction based on Gauss-map normal bounds. The algorithm
consists of both a preprocessing component and a runtime component, which exploit both screen-space
error metrics and frame-to-frame coherence.

Hoppe [17, 18, 19, 20, 21] has based his research on Hoppe et al. [22], who create a decimated
triangulated irregular network from three operations, edge collapse, vertex split, and edge swap. Hoppe
discovered that the edge collapse was itself enough for simplification, which led to a simplification
representation called progressive meshes. Progressive meshes store a fine mesh together with a sequence
of edge collapses. As Xia and Varshney, Hoppe reduces backface detail based on nested Gauss-map
normal bounds. Some consideration is given to frame-to-frame coherence, but execution times are still
proportional to the full output mesh size. Vertex morphing, called geomorphing by Hoppe, is included to
reduce popping artefacts. Progressive meshes are further discussed in Section 3.

2.6 Optimal Methods
In addition to the methods described above, it exists a few methods that do not fit into any of the
previous categories. Those are optimal methods, which are included only for their theoretical properties
rather than practical applicability. The problem of finding an L∞-optimal polygonal approximation of a
height field is NP-hard, which implicates that any algorithm that finds such an approximation has an
exponential time complexity [16].

 Section 3.1 Definitions 9

3 PROGRESSIVE MESHES
Progressive meshes were developed by Hoppe [19] based on mesh optimisation [22], in which the space
of triangle meshes is traversed and simplified by applying three operations, edge collapse, edge split, and
edge swap. Hoppe discovered that only one of these operations, the edge collapse, is sufficient for
simplifying meshes.

Hoppe later extended the algorithm to include view-dependent simplification of triangle meshes,
which enabled progressive meshes to be included in real-time applications [20, 21]. A progressive mesh
is defined as a sequence of triangle meshes of various levels of detail that are computed based on terrain
structure and observer position. The underlying set of vertices is not required to be a regular grid, but
this will be assumed when progressive meshes are compared to real-time optimally adapting meshes in
Section 4.7.

3.1 Definitions
A triangle mesh M is denoted by a tuple (V, F), where V ⊆ R3 is a finite set of vertices, and F ⊂ V 3 is a
set of ordered triples (vi, vj, vk) that specifies the vertices of the triangles ordered counter-clockwise.
Hoppe defines a triangle mesh M as a tuple (K, V), where K is a simplicial complex that represents the
connectivity of the vertices, edges, and faces, and V = {v1, v2, ..., vn} ⊆ R3 is a finite set of vertices. A
simplicial complex K consists of a set of vertices {v1, v2, ..., vn} and a set of non-empty subsets of the
vertices, which is called the simplices of K. The 0-simplices {i} ∈ K are called vertices, the 1-simplices
{ i, j} ∈ K are called edges, and the 2-simplices {i, j, k} ∈ K are called triangle faces. For each simplex s
∈ K, |s| denotes the convex hull of its vertices in R3 and |K| = Us∈K|s|. φ:Rn→ R3 is defined as the linear
function that maps the i th standard basis vector ei ∈ Rn to vi ∈ R3. The image φ(|K|) is known as the
geometric realisation of M.

The neighbourhood of a vertex v is defined as the set of triangle faces adjacent to v. It is often called
the star of the vertex. The neighbourhood of an edge e = {vi, vj} refers to the union of the
neighbourhoods of the vertices vi and vj. It is often called the star of the edge. An edge that has only one
adjacent triangle is called a boundary edge. A boundary vertex is a vertex adjacent to at least one
boundary edge. An interior vertex is a non-boundary vertex. Finally, the valence of a vertex is defined as
the number of edges adjacent to that vertex.

Let M 0 be a coarse triangle mesh simplified from a triangle mesh M. A progressive mesh,
abbreviated PM, of M is a sequence of n vertex splits that refines M 0 into M. A vertex split is an
elementary mesh operation that adds a vertex and two triangles to the mesh. The number of vertices in
M 0 is denoted m0. The vertices of mesh M i is denoted V i = {v1, v2, ..., vm0+i}. The position of a vertex vj
in M i is labelled vj

i [19, 21, 23].

3.2 Progressive Mesh Representation
A PM can be illustrated as

)(...
110

10 MMMM n
vsplitvsplitvsplit n

=→→→
−

. (3.1)

An operation vspliti−1 defines the vertex split that generates the i th mesh in the PM. A PM is
represented by a tuple (M0, {vsplit0, vsplit1, ..., vsplitn−1}), of which each vertex-split operation can be
parameterised as vsplit(vu, vl, vr, vs, vt, fl, fr), indicating that a vertex vu is replaced by two new vertices vs
and vt. Two triangle faces fl = (vl, vs, vt) and fr = (vs, vr, vt) are also inserted into the triangle mesh in the
operation. This is illustrated in Figure 3.1. If vu would be a boundary vertex, then either vl or vr are set to
invalid and only one face will be introduced into the mesh.

10 Chapter 3 Progressive Meshes

Hoppe [21] parameterises the vertex-split operation as vsplit(vs, vl, vr, vt, fl, fr), which creates one new
vertex vt, and repositions vs. However, this parameterisation is inadequate, since the new position of vs is
not included.

A PM of M can also be represented as a sequence of n records that applies the inverse operation to
vertex split, an edge collapse, as illustrated in Figure 3.1. The split of vertex vu introduces new vertices
vs and vt, and two new triangle faces fl = (vl, vs, vt) and fr = (vs, vr, vt) into the mesh. The edge collapse is
the inverse operation, i.e. the vertices vs and vt are replaced by a single vertex vu. The triangle faces fl and
fr are removed in the process.

Vertex spl i t

Edge co l lapse

vl
v

rvu v l

vs

v r

v
t

f
r

f
l

Figure 3.1: The vertex-split and edge-collapse operations.

This sequence becomes

 01
021

...)(MMMM
ecolecol

n
ecol

n
nn

→→→=
−− − . (3.2)

Each edge collapse operation is parameterised as ecol(vu, vl, vr, vs, vt, fl, fr), which indicates that the
vertices vs and vt, adjacent to vl and vr are collapsed to a vertex vu that is also adjacent to vl and vr. This
removes the triangle faces fl = (vl, vs, vt) and fr = (vs, vr, vt) from the mesh.

Thus, a PM defines a sequence of meshes M0, M1, ..., Mn from which n view-independent level-of-
detail approximations can be retrieved. The order of edge collapse operations determines the quality of
the approximating meshes Mi, i < n.

3.3 Progressive Mesh Construction
Several different methods determine the order of edge collapses. They have all to compromise between
simplicity, speed, and accuracy. To maximise the simplicity and speed, the order of edge collapses could
be chosen at random, but this guarantees no accuracy. Since the PM construction is an offline process,
the speed is of low priority. Hoppe [19], Xia and Varshney [30], and Garland and Heckbert [13] have
presented algorithms that produce progressive meshes of high quality.

3.3.1 Energy Function
To find the right order of edge collapses, Hoppe minimises an energy function E:M→R, defined by

)()()()(MEMEMEME springrepdist ++= , (3.3)

where Edist, Erep, Espring:M→R and M is the set of all meshes. The distance energy term Edist equals the
sum of squared distances from the vertices {v1, v2, ..., vn}:

 ∑=
i

vidist vdME)(,()(2 Kφ . (3.4)

The representation energy Erep term is defined by

 Section 3.4 Selective Refinement and Coarsening 11

 mcME reprep =)(, (3.5)

which is a penalty function that adds a term proportional to the number of vertices m in M. Finally, the
spring energy term Espring is defined by

2

},{

)(∑
∈

−=
Kkj

kjspring vvME κ . (3.6)

The spring energy term can be compared to placing a spring of rest length zero and tension κ on
each edge. These three terms together define a function that measures the closeness to fit, penalises
meshes with a large number of vertices, and regularises the mesh to guide the optimisation to a desirable
local minimum.

The function E has to be minimised in order to find the right order of edge collapses. This is done by
minimising E by two nested loops. The outer loop optimises over K, the connectivity of the mesh, while
the inner loop minimises the set {Edist(V) + Espring(V) | V ∈ V}.

3.3.2 Merge Tree
Xia and Varshney [30] base their PM sequence in order of edge lengths in a merge tree. At the first level
of the tree, as many edges as possible are collapsed as long as the neighbourhoods of the edges do not
intersect. At the second level, the remaining edges are collapsed according to the same rule. Within each
level, the edge collapses are ordered by increasing edge lengths. The process is repeated until no more
edges can be collapsed.

3.3.3 Quadric Error Metric
Garland and Heckbert [13] assign a cost to each potential edge collapse using quadric error metrics. A
priority queue that is keyed on cost is built with the minimum cost edge at the top. If an edge is
collapsed, a new vertex is introduced. The cost for all edges adjacent to this vertex is recomputed and the
priority queue is updated. They associate a symmetric 4×4 matrix Q with each vertex v, which is
represented by a vector [vx vy vz 1]T. The error at vertex v is computed by ε = vTQv and represents the
squared distances from the vertex to a set of planes in its neighbourhood.

3.4 Selective Refinement and Coarsening
A selectively refined mesh Ms is defined as the triangle mesh obtained by applying a subsequence S ⊆
{0, 1, ..., n − 1} of the PM vertex-split sequence. This may however introduce inconsistent meshes. In
Figure 3.2, two edge collapse operations are performed; one that collapses edge {vi, vj} and one that
collapses edge {vs, vt}, with parameterisations ecol(vk, vl, vm, vi, vj, fl, fm) and ecol(vu, vj, vr, vs, vt, fj, fr),
respectively.

vi

vs

v rv j

v t

v l

vm

vr

vk vu

v l

vm

ecol(vk
, vl

, vm
, vi

, vj, f l, fm
)

ecol(vu, vj, vr , vs, vt, f j, f r)
f l

f m

f j f r

Figure 3.2: Collapsing edges {vi,vj} and {vs,vt}.

12 Chapter 3 Progressive Meshes

If edge {vi, vj} is collapsed before edge {vs, vt}, vertex vj will be replaced by another vertex vk before
edge {vs, vt} is collapsed, which results in an inconsistent parameterisation, since vj is included in the
parameterisation of the second collapse. However, if the order of collapses is reversed, both edge
collapses will become consistent. Thus, the order of edge collapses is important to maintain consistent
meshes.

Hoppe [21] introduced new definitions of vertex split and edge collapse that together with a set of
legality preconditions are sufficient for consistency. The operations are still the same; only their
parameterisations differ. Vertex split is parameterised as vsplit(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3), and edge
collapse is parameterised similarly, ecol(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3). As shown in Figure 3.3, the vertex
split replaces a vertex vu by two other vertices vs and vt. Two new triangle faces are introduced in the
operation, fl = (vl, vs, vt) and fr = (vs, vr, vt), between two pairs of neighbouring faces (fn0, fn1) and (fn2, fn3).
The edge collapse applies the inverse operation, i.e. two vertices vs and vt are merged into a single vertex
vu. The two faces fl and fr vanish in the process. Meshes with boundary are supported by letting the face
neighbours fn0, fn1, fn2, and fn3 representing special nil values. A vertex split with fn2 = fn3 = nil creates
only a single face fl.

f n1

f n4

f n3

f n0

v l vu

v r

f
n1

f n4

f n3

f n0

v l

v
s

v
r

Vertex spl i t

Edge col lapse

f
r

f
l

v t

Figure 3.3: The new vertex-split and edge-collapse parameterisations.

3.4.1 Legality of Edge Collapse
There are two necessary preconditions for the new definitions of vsplit and ecol to be legal. A
vsplit(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3) operation is legal if vu is active and all faces fn0, fn1, fn2, and fn3 are
active, i.e. vu, fn0, fn1, fn2, fn3 are all present in the triangle mesh. An ecol(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3)
operation is legal if vs and vt are active vertices and the faces adjacent to fl and fr are fn0, fn1, fn2, and fn3.

An illegal edge collapse can change the topology of the mesh. If there is a hole in the mesh, as in
Figure 3.4 (a), a collapse of the edge {vs,vt} removes the hole. Collapsing the edge {vs,vt} in Figure 3.4
(b) creates a mesh that is not 2-manifold and the collapse of the edge {vs,vt} in Figure 3.4 (c) can invert
faces if the resulting vertex is positioned to the left of va.

v
s

v t

v
s

v t v s v tv
a

(a) (b) (c)

Figure 3.4: a) Collapsing {vs,vt} removes the hole. b) Collapsing {vs,vt} results in a
mesh that is not 2-manifold. c) Collapsing {vs,vt} to a vertex that is placed to the left of
va inverts the faces.

 Section 3.5 Vertex Morphing 13

This has resulted in another definition of edge legality. An edge collapse ecol(vu,vs,vt, fl, fr, fn0, fn1, fn2, fn3)
is legal if the following three conditions are fulfilled [23]:

1. If the resulting vertex vu is an interior vertex, its valence must be greater than or equal to three.
Otherwise, its valence must be greater than or equal to one.

2. If a vertex vl is adjacent to both vs and vt, either the triangle (vl, vt, vs) ∈ F or (vl, vs, vt) ∈ F.
3. If vs and vt are both boundary vertices, the edge {vs, vt} must be boundary.

The problem of mesh inversion can be prevented by three methods. First, based on a method by
Lilleskog [23], the dot product of the normals of the triangle before and after the edge collapse can be
computed. If the result is negative, the triangle has been flipped, and the edge collapse should be
disallowed. Second, this problem can be avoided by constructing a projection plane, on which the
neighbourhood of the edge is injectively mapped. The resulting vertex is placed so that inversion is
impossible. The third method is the computationally cheapest one, although it restricts the position of the
resulting vertex vu. Place vu only on a location previously occupied by the collapsed edge.

The introduction of slivers in the terrain can produce aliasing artefacts with texture mapping.
Lilleskog [23] and Guéziec [14] have developed two methods to avoid them:

1. A vertex of high valence is likely to be adjacent to slivers. These slivers can be avoided by
setting an upper limit of vertex valences.

2. Guéziec uses a metric called the compactness c of a triangle with lengths l0, l1 and l2 of the sides
and area a:

2
2

2
1

2
0

34

lll

a
c

++
= (3.7)

The area can be computed by Heron’s formula:

 ,))()((210 lPlPlPPa −−−= where
2

210 lll
P

++
= (3.8)

Both the valence of a vertex and the compactness of a triangle can be used to restrict edge collapses
that would introduce slivers.

3.5 Vertex Morphing
Hoppe has introduced a method called geomorphing for morphing vertices between two meshes. A
geomorphed mesh is denoted MG(α), where 0 ≤ α ≤ 1, such that MG(0) looks like Mi and MG(1) = Mi+ 1
and MG(α) is the linear interpolation between Mi and Mi+ 1. More formally, a geomorph MG(α) is
defined by

))(,()(1 αα G
j

iGM VK += , (3.9)

where Ki+ 1 is the simplicial complex for Mi+ 1 and Vj
G(α) is defined by

++∉
++∈−+

=
+

}1,{,

}1,{,)1(
)(

0

0
1

imsjv

imsjvv

i
i
j

i
i
s

i
jG

j
i

αα
αV . (3.10)

Thus, MG(α) has the same connectivity as Mi+ 1, but the positions of the vertices are interpolated from
those in Mi.

These ideas can be extended to construct geomorphs between any two meshes. There is a natural
correspondence between any two meshes Mc and Mf, with 0 ≤ c < f ≤ n. Every vertex in Mf is related to a

14 Chapter 3 Progressive Meshes

unique vertex of Mc by a surjective map Ac, which is obtained by composing the sequence of edge
collapse operations. More formally, a vertex vj in Mf is related to the vertex vAC(j) in Mc, where

+>
+≤

=
−− cmjsA

cmjj
jA

mj
c

c

01

0

),(

,
)(

0

. (3.11)

Thus, a geomorph can be defined by

))(,()(αα G
j

fGM VK= , (3.12)

where

 c
jA

f
j

G
j cvv

)(
)1()(ααα −+=V . (3.13)

Thus, smooth transition between two consecutive frames is possible by progressive meshes
regardless of the difference in triangulation.

3.6 View-Dependent Refinement of Progressive Meshes
Progressive meshes were originally optimised for view-independent simplification of terrain only, but
the algorithm was improved in [21], where Hoppe developed view-dependent progressive meshes
(VDPM) that incrementally refines the progressive mesh.

3.6.1 Overview
A progressive-mesh sequence can be represented by a forest of binary trees. The roots of the binary trees
are the vertices of the base mesh M0, and children are created as vertices are split. The original mesh M
is constructed from all leaf nodes.

v 1

v
9

v
6

v
3

v
8

v
2

v
7

v
5

v
4

v
10

v
14

v
15

v 18

v
13

v
12

v 16 v 17

v
11

v 19

M 0

M

Figure 3.5: A forest of binary trees that represents a VDPM.

A selectively refined mesh Ms is achieved by keeping track of a vertex front in the tree. Vertex-split
and edge-collapse operations move parts of the vertex front up or down in the hierarchy, as illustrated in
Figure 3.6.

v 1

v 9v 6

v 3

v 8

v 2

v 7v 5v 4

v 10 v 14 v 15

v 18

v 13v 12

v 16 v 17

v 11

v 19

M s

Figure 3.6: A vertex front of a selectively refined mesh Ms.

 Section 3.6 View-Dependent Refinement of Progressive Meshes 15

3.6.2 Selective Refinement Algorithm
There is an algorithm that incrementally adapts a mesh for selective refinement. The vertex front is
stored as a list of active vertices together with a list of all active triangles. The vertex list is traversed
before each frame is rendered and a decision is made for each vertex whether to leave it as it is, split it,
or collapse it.

A query function, qrefine, determines whether a vertex v should be split based on the current view
parameters. It returns false either if v is outside the view frustum, if it is oriented away from the
observer, or if a screen-space geometric error is below a given tolerance. Otherwise, it returns true.
Hoppe [21] and Lilleskog [23] discuss these refinement criteria in detail.

Algorithm Adaptive Refinement
Input: • A set of active vertices V in a VDPM.
Output: • A refined triangulation.
1. for each v ∈ V do
2. if v has children and qrefine(v) then
3. force vsplit(v)
4. else
5. if v has a parent and edge collapse is legal for v.parent and not qrefine(v.parent) then
6. ecol(v.parent)
7. end if
8. end if
9. end for

Algorithm 3.1: Adaptive refinement.

Algorithm 3.1 checks each vertex and splits it if necessary. If qrefine(v) evaluates to true, the vertex
v should be split. If the preconditions for splitting v are not fulfilled, a sequence of other vertex splits is
performed in order for vsplit(v) to become legal. This is performed by Algorithm 3.2.

If either v has no children or qrefine(v) returns false, v is checked for a parent. If v has a parent and
the edge collapse of v and its sibling is legal, the edge collapse is performed if qrefine returns false for
the parent of v.

Algorithm 3.2 keeps all vertices that have to be split in a stack. The parent of each vertex v in the
stack is pushed onto the stack if v is not active. If v is active and vsplit(v) is legal, then v is split. This is
repeated until the original vertex is split. Hoppe [21] describes both algorithms together with necessary
data structures in more detail. Some implementation details are also included.

16 Chapter 3 Progressive Meshes

Algorithm Force vsplit
Input: • A vertex v in a VDPM.
Output: • A refined VDPM, where v is split. Any other vertices that have to be split in
 order to the split of v is to be legal are also split.
1. stack := v
2. while v := stack.pop() do
3. if v has children and v.fl ∈ F then
4. stack.pop()
5. else
6. if v ∉ V then
7. stack.push(v.parent)
8. else
9. if vsplit(v) is legal then
10. stack.pop()
11. vsplit(v)
12. else
13. for i := 0 to 3 do
14. if v.fni ∉ F then
15. stack.push(v.fni.parent)
16. end if
17. end for
18. end if
19. end if
20. end if
21. end while

Algorithm 3.2: Force vsplit.

 Section 4.1 Definitions 17

4 REAL-TIME OPTIMALLY ADAPTING MESHES
Real-time optimally adapting meshes, ROAM, were presented by Duchaineau et al. [6] as a further
development of previous work by Lindstrom et al. [24]. Duchaineau et al. chose the same space of
binary triangle-tree meshes, but used split and merge operations instead of triangle fusions.

4.1 Definitions
This section uses a similar notation as Duchaineau et al. A triangle T = (v1, v2, v3) is defined by the
positions of its three vertices v1, v2, and v3 ordered counter-clockwise. A triangle bintree is a binary tree,
whose nodes consist of right-isosceles triangles. An edge E with neighbouring vertices v1 and v2 is
denoted {v1, v2}. A right-isosceles triangle T will be denoted T = (va, v0, v1), where va is the apex vertex,
v0 is the left base vertex, and v1 is the right base vertex. If T = (va, v0, v1) is a node in a triangle bintree,
the children of T are defined by splitting T along an edge from va to the midpoint vertex vc of v0 and v1.
The left child of T is T0 = (vc, va, v0) and the right child is T1 = (vc, v1, va). Figure 4.1 illustrates a three-
level triangle bintree.

v0 v1

va

v0 v1

va

vc

v0 v1

va

vc

va1va0

T1T1

T2

T2

T5

T4 T7
T6

T3

T7T6T5T4

T3

(a) (b)

Figure 4.1: The first three levels of a triangle bintree.

4.2 ROAM Representation
The purpose of a triangle bintree is to easily choose the local level of detail of the triangulation. If the
terrain is flat or distant, only a few triangles are necessary to approximate a large area, while if the
terrain is rough or close, more triangles are required.

The source data is a regular grid of equally spaced height samples. ROAM is limited to only handle
data of sizes (2n+1)×(2n+1). However, data structures of other sizes can be divided into several small
quadratic blocks. Each block may be represented by two large triangles, who form the root nodes of their
respective triangle bintree. The rest of the triangle bintrees are defined by recursively applying the
splitting process until a triangle of minimal size is constructed. These triangles form the leaves of the
tree.

Each interior triangle T in the triangle bintree has three neighbours. TB is defined to be the base
neighbour that shares its base edge {v0, v1} with T. Similarly, TL is defined to be the left neighbour that

18 Chapter 4 Real-Time Optimally Adapting Meshes

shares its right edge {va, v0} with T and TR is defined to be the right neighbour that shares its left edge
{ v1, va} with T. This is illustrated in Figure 4.2.

TB

T

TL TR

Figure 4.2: The notation for neighbour triangles.

Left and right neighbours to a triangle T in a bintree triangulation are either from the same bintree
level l as T or from the next finer level l+ 1. The base neighbour can only be from the same level l or the
next coarser level l−1.

If both a triangle T and its base neighbour TB is of the same bintree level, the tuple (T, TB) is said to
be a diamond. If T is to be split, TB has also to be split in order to avoid cracks and shading
discontinuities [6, 31]. The split of TB may also cause other neighbours to be split, resulting in a
recursive sequence of splits. The splits in this sequence are known as forced splits and are illustrated in
Figure 4.3.

F o rced sp lits

TB

TR

TL

T

Figure 4.3: The split of T can result in a sequence of forced splits.

If both a triangle T and its base neighbour TB have been split once, they may be merged. In this case,
they are said to form a mergeable diamond. However, (T, TB) does only form a mergeable diamond if
none of the children of T or TB is split.

These two tree operations, split and merge, are together enough to obtain any other triangulation
from a given base triangulation. With the use of force splits, no other efforts are required to avoid cracks
or shading discontinuities.

4.3 Vertex Morphing
Vertex morphing provides the possibility of animating the split and merge operations during a set of
consecutive frames to avoid popping artefacts. w(v) is defined to be the position (vx, vy, vz) of a vertex v.
For a split operation, the unsplit base-edge midpoint

2

)()(10 vwvw
wm

+
= (4.1)

 Section 4.4 Triangulation Algorithms 19

is linearly interpolated to the position

)(cc vww = (4.2)

of the new vertex vc. Duchaineau et al. linearly interpolate wm to wc with intermediate positions

]1,0[,)1()(∈∀+−= ttwwttw cma . (4.3)

However, since the frames are visualised at discrete time steps, this may be reformulated. Morphing a
vertex through n consecutive frames with start time t0 becomes

 } ..., ,1 ,0|{,)())(1()(000 ni
d

i
ttwttwtttw cma =+∈∀−+−−= , (4.4)

where d is the time between two consecutive frames.

4.4 Triangulation Algorithms
Duchaineau et al. have constructed two algorithms that generate optimised triangulations. The first is
simple and used in a few rare cases only. It is based on a rough triangulation that is iteratively refined by
a sequence of forced splits. A priority queue Qs, known as a split queue, contains monotonic priorities
for all triangles to determine the order of these splits. The priority of a triangle T is determined by the
error caused by using T instead of the finest triangulation. The error metrics are covered in Section 4.5.

Algorithm Split Queue
Input: • A base triangulation T.
 • An empty priority queue QS.
 • Nmax ∈ N, indicating the maximal number of triangles.
 • εmax ∈ R, indicating the maximal error.
Output: • An optimal triangulation T.
1. for all triangles T ∈ T do
2. insert T into QS
3. end for
4. while |T| < Nmax or E(T) > εmax do
5. identify highest-priority triangle T in Qs
6. split(T)
7. remove T and other split triangles from Qs
8. add any new triangles in T to Qs
9. end while

Algorithm 4.1: Split Queue.

|T| denotes the number of triangles in T and E(T) denotes as the maximal error of all triangles in T.

It can be shown that Algorithm 4.1 produces optimal triangulations at every step. The first two
statements in the while loop create the triangulation, while the last two update the split queue.

Since the viewpoint changes between each frame, so should also the triangulation. The split-queue
algorithm can be extended to a frame-coherent algorithm that produces an optimal triangulation for a
frame f based on the triangulation for the previous frame f−1 by applying both split and merge
operations.

Assume we are given triangle bintrees Tf for each frame f ∈ N and that every triangle in every
triangle bintree is given a priority value. The priority of a triangle does not have to equal the priorities of

20 Chapter 4 Real-Time Optimally Adapting Meshes

the same triangle in the other triangle bintrees. The priorities are computed by a view-dependent screen-
space geometric error, which is covered in Section 4.5.

A priority split-queue Qs contains a monotonic priority pf(T) for each triangle T in the bintree. A
second priority queue Qm contains the priorities for all mergeable diamonds in the current triangulation.
The priority for a mergeable diamond (T, TB) is defined as the maximum priority mp = max{pf(T), pf(TB)}
of the individual triangles. Smax(T) denotes the maximum split priority and Mmin(T) is defined as the
minimum merge priority.

Algorithm Merge Queue
Input: • A base triangulation T.
 • Empty priority queues Qs and Qm.
 • Nmax ∈ N that indicates the maximal number of triangles.
 • εmax ∈ R indicates the maximal error.
Output: • Optimal triangulations for all frames.
1. for all frames f do
2. if f = 0 then
3. compute priorities for T's triangles and diamonds and insert them into Qs and Qm, respectively
4. else
5. let T = Tf−1
6. update the priorities for all elements of Qs and Qm
7. end if
8. while |T| > Nmax or E(T) > εmax or Smax(T) > Mmin(T) do
9. if |T| > Nmax or E(T) < εmax then
10. identify the lowest-priority pair (T, TB) in Qm
11. merge(T, TB)
12. remove the merged children from Qs
13. add the merged parents T and TB to Qs
14. remove (T, TB) from Qm
15. add all newly mergeable diamonds to Qm
16. else
17. identify highest-priority T in Qs
18. split(T)
19. remove T and other split triangles from Qs
20. add any new triangles in T to Qs
21. remove any diamonds whose children were split from Qm
22. add all newly mergeable diamonds to Qm
23. end if
24. end while
25. set Tf = T
26. end for

Algorithm 4.2: Merge queue

Algorithm 4.2 produces the same optimal mesh as Algorithm 4.1 by computing the minimal number
of split and merge operations necessary to achieve an optimal triangulation. Thus, the algorithm exploits
coherence between consecutive frames. It has a time complexity proportional to the minimal number of
split and merge operations. However, if all triangles are disjoint in two consecutive frames, the worst-
case time complexity is proportionate to the sum of the number of triangles in both triangulations. These
cases occur only when there is a large number of triangles between the minimum merge priority and the
maximum split priority. Fortunately, these cases are easily discovered and the triangulation is sped up by
reinitialising T, Qs, and Qm and fall back to algorithm 4.1.

 Section 4.5 Queue Priorities 21

4.5 Queue Priorities
The priority for each triangle in the triangle bintree is determined by an error metric. The error metric
used by Duchaineau et al. is a measure of the geometric screen distortion.

Given a triangle T, a wedgie is defined as the volume consisting of points {(x, y, z) ∈ R3 | (x, y) ∈
P(T) and |z − zT(x, y) | ≤ eT}. P:T→R2 is a function such that P(T) returns the orthogonal projection of T
to the xy-plane, zT:P(T) → R is a function that returns the z-value of a triangle T at position (x, y), and eT
≥ 0 is known as the wedgie thickness. A line segment consisting of points {(x, y, t) ∈ R3 | t − zT(x, y)| ≤
eT} is called the thickness segment for T. A wedgie is illustrated in Figure 4.4 (b).

h

(a) (b)

Figure 4.4: a) The height h indicates the object-space error of using a large triangle
instead of two smaller ones. b) A wedgie is defined as the grey volume of height h.

The wedgie bounds are built bottom-up, starting with eT = 0 for all the leaves of the triangle bintree.
The tightest wedgie bound for a nonleaf triangle T is

 { }
2

)()(
)(where,)()(,max 10

10

vzvz
vzvzvzeee cTcTcTTT

+=−+= . (4.5)

Thus, this formula enables us to assign a priority value for each triangle.

This error metric is view independent, but it can be extended to regard the view position as well.
This requires the computation of the geometric screen-space distortion. Let s(v) ∈ R2 be the correct
screen-space position for a domain point v, and sT(v) ∈ R2 be the approximate position from a
triangulation T. Further, let the point-wise geometric distortion at v be defined by dist(v) =
||s(v) − sT(v)||2.

The minimal upper bound of the distortion is sup{ dist(v) | v ∈ V}, where V is the set of domain
points whose world-space positions w(v) are within the view frustum. This minimal upper bound can
occur between two vertices due to the perspective transformation. This is solved by computing an upper
bound that is not necessarily minimal.

Let (p, q, r) be the camera-space coordinates of a point w(v). Without loss of generality, assume that
the perspective projection is of the form s = (p/r, q/r). The geometric screen-space distortion at v is
bounded by projecting the thickness segment at v onto the view plane. Let (a, b, c) be the camera-space
vector corresponding to world-space thickness vector (0, 0,eT). The screen-space distortion at v is
bounded by

2

max ,)(
cr

bq

cr

bq

cr

ap

cr

ap
vdist

−
−−

+
+

−
−−

+
+= , (4.6)

which can be rewritten as

 22
22max)()(

2
)(cqbrcpar

cr
vdist −+−

−
= (4.7)

22 Chapter 4 Real-Time Optimally Adapting Meshes

The minimum of r2 − c2 and the maximum of (ar − cp)2 + (br − cq)2 occur at the vertices, although
not generally at the same vertex. An upper bound on distmax(v) can thus be obtained by substituting these
minimum and maximum values into Equation 4.7.

4.6 Performance Enhancements
Duchaineau et al. have found four optimisation algorithms that increase the frame rate. The first three
together decrease the respective computation times for their subtasks by more than a factor of ten, while
the fourth ensures strict frame rates.

4.6.1 View-Frustum Culling
The view-frustum culling is based on flags for every triangle. The view frustum can be defined by the
intersection of six halfspaces. Four create a pyramid containing the field of view, while the other two are
called the near and far clipping planes.

Every triangle is given an IN flag for each of the six halfspaces, and three flags named OUT, ALL-IN
or DONT-KNOW. IN is set when the entire wedgie is inside its corresponding halfspace, OUT is set
when the entire wedgie is outside at least one halfspace, ALL-IN is set when all six IN flags are set, and
DONT-KNOW is set if neither OUT or ALL-IN is set.

The bintree is traversed recursively to update these flags. Duchaineau et al. describes the purpose of
the flags as follows: “If a triangle T was labelled OUT or ALL-IN for the previous frame and these labels
are correct for the current frame, the subtree for T does not need to be updated and recursion terminates.
Otherwise, T inherits its IN flags from its parent and rechecks its wedgie against the halfspaces not
marked IN, setting new IN flags if appropriate. If the wedgie is entirely outside any of these halfspaces,
T and all its children are marked OUT. If all IN flags are set, T and all its children are marked ALL-IN.
Otherwise T is marked DONT-KNOW and recursion continues to its children.”

4.6.2 Incremental triangle stripping
Rendering performance can be improved by organising triangles into strips. A triangle strip is a
sequence of three or more vertices, in which every consecutive set of three vertices defines a triangle
[11]. Duchaineau et al. have included incremental triangle stripping in their implementation, but the
algorithms are not mentioned.

However, they describe the algorithm as a simple, sub-optimal, incremental approach that only
considers non-generalised strips. The average strip length has been computed to around four to five
triangles. A triangle strip from which a triangle is deleted is either shortened on the end, split in two, or
deleted. If a new triangle is to be inserted, it is attached to neighbouring triangle-strip ends, if possible.

4.6.3 Priority-computation Deferral
As the view position changes between two consecutive frames, the split- and merge-queue priorities of
all triangles change. Recalculating all priorities is a very time-consuming task. However, it is only
necessary to recalculate the priorities when they potentially affect a split or merge operation.

This scheme requires a velocity bound on the observer. A velocity bound determines a time-
dependent bound for screen-distortion priorities. The crossover priority, i.e. the maximum split-queue
priority when the split and merge process has finished, changes very slowly from frame to frame. Test
results have shown that these changes are around 1% of the maximum queue priority.

Triangle-priority recomputations are deferred until the priority bound overlaps the crossover priority.
A deferral list is kept for future frames, but only the priorities of the triangles on the current frame have
to be recomputed.

4.6.4 Progressive Optimisation
The triangulation optimisation has to be stopped when the allotted frame time is about to expire in order
to maintain a strict frame rate. Three algorithms supports progressive optimisation: optimisation

 Section 4.7 Comparison to VDPM 23

processing, triangle stripping and priority recomputations. The only phase of ROAM not suitable for
progressive optimisation is view-frustum culling.

4.7 Comparison to VDPM
ROAM has been compared to VDPM in order to find the best algorithm for the implementation. A
thorough comparison would require the implementation of both algorithms and compare them
empirically. However, time constraints preclude that option. Therefore, the algorithms have only been
compared theoretically. Both algorithms include a preprocessing component and a runtime component.
The comparison has only considered the speed of the runtime components, since there are no time
constraints on the preprocessing components and memory resources are essentially unlimited at Ericsson
Saab Avionics AB.

Both ROAM and VDPM support vertex morphing. A VDPM elementary mesh operation, i.e. vertex
split or edge collapse, involves two vertices. Therefore, VDPM is required to morph two vertices in such
an operation. On the other hand, a ROAM elementary mesh operation, i.e. a split or merge operation,
only involves a single vertex. Thus, vertex morphing is less computationally expensive for ROAM.

A ROAM elementary mesh operation is easily checked for validity. A split operation for a triangle t
is valid if t is neither a leaf or previously split. A merge operation for a triangle t is valid if it has
previously been split. The positions of the resulting vertices from these operations are given from the
height field and require no computations.

A validity test for a VDPM elementary mesh operation requires more computations. A vertex split
that is parameterised vsplit(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3) is legal if vu, fn0, fn1, fn2, and fn3 are active. Thus,
one vertex and four triangles have to be checked for presence in the mesh. In addition, the position from
the resulting vertex from an edge collapse operation is not given and has to be computed. Additional
computations must be made to avoid inverting the triangle when an optimal position is found. Thus,
while VDPM optimises the positions of its vertices, ROAM is faster.

ROAM automatically avoids slivers since all triangles are right isosceles. The minimum angle in any
triangle is π/4 radians. VDPM have to make additional tests to avoid slivers. If Guéziec’s method is
used, the compactness of the triangle has to be computed. In addition, finding the compactness requires
the computation of the lengths of the three triangle edges and the area of the triangle. Morphing two
vertices during a VDPM elementary mesh operation introduces slivers temporarily in the mesh. This
cannot be avoided and such an operation may result in aliasing artefacts.

Although both ROAM and VDPM exploits frame coherence, ROAM execution time is proportional
to the number of triangle changes per frame, while VDPM execution time is proportional to the full
output mesh size.

Both ROAM and VDPM generate triangle strips. Duchaineau et al. claim to achieve 4-5 triangles
per strip, while Hoppe has computed an average of 4.2 triangles per strip. The execution times for
generating the strips are however not comparable.

Duchaineau et al. conclude that “progressive-mesh preprocessing is organised as a global
optimisation process, and thus is too slow to support dynamic terrain”, although the space of triangle
meshes that can be produced by ROAM is only a subset of the space of progressive meshes. ROAM
produce optimal triangulation within the restricted space of triangulations, but it does not produce
optimal triangulation in the space of all possible triangulations. Lilleskog [23] has shown that
progressive meshes produce triangle meshes with 50−75% of the triangles produced by Lindstrom et al.
[24].

In summary, although ROAM requires more triangles for the same maximal error than VDPM,
ROAM is so much faster to generate the triangles that it is preferred for real-time applications.
Therefore, the implementation of the prototype is based on ROAM.

24 Chapter 5 ROAM Algorithm and Implementation Aspects

5 ROAM ALGORITHM AND IMPLEMENTATION ASPECTS
A prototype based on ROAM has been implemented together with a visualisation engine. Since the split
and merge algorithms have not been given explicitly by Duchaineau et al., they were designed before the
implementation phase. The major difference between the prototype and the original ROAM algorithm is
a new merge operation and a main algorithm that does not need to use any split or merge priority queues.
Triangle stripping, progressive optimisation, and priority-computation deferral have not been included
because of time constraints.

This chapter describes the algorithms, data structures, and implementation issues for the prototype.
In total, four algorithms are presented below. The split algorithm, which splits a triangle into two
children and performs all necessary force splits, is based on an algorithm by McNally [25]. The merge
algorithm can merge the children of any triangle, even if they also have been split. Finally, a main
algorithm that controls the split and merge process is presented.

The data structures for the triangle bintree and its nodes are covered at the end together with some
implementation issues.

5.1 Split Algorithm
This algorithm is based on an algorithm by McNally [25], but with two minor changes. The purpose is to
split a triangle into two children and perform all necessary force splits.

McNally has not implemented the merge operation and consequently does not exploit frame-to-
frame coherency either. Therefore, an extra statement that controls neighbour pointers was added in
order to adapt his algorithm into one that can be used together with the merge operation. In addition,
McNally’s algorithm checks if the left neighbour of a triangle’s left neighbour is the triangle itself. This
can never happen, and the operation should be removed.

The algorithm is divided into two functions, Split and xSplit. Splitting a triangle T is done by the
Split function, which performs any necessary force splits first and then calls xSplit twice, once with T
and once with the base neighbour of T.

Algorithm Triangle Split
Input: • An unsplit nonleaf triangle T in a triangle bintree.
Output: • An updated triangle bintree, where T is split and all necessary force splits are performed.
1. if T.BaseNeighbour is valid then
2. if T.BaseNeighbour.BaseNeighbour is valid then
3. Split(T.BaseNeighbour)
4. end if
5. xSplit(T)
6. xSplit(T.BaseNeighbour)
7. T.LeftChild.RightNeighbour := T.BaseNeighbour.RightChild
8. T.RightChild.LeftNeighbour := T.BaseNeighbour.LeftChild
9. T.BaseNeighbour.LeftChild.RightNeighbour := T.RightChild
10. T.BaseNeighbour.RightChild.LeftNeighbour :=T.LeftChild
11. else
12. xSplit(T)
13. set T.LeftChild.RightNeighbour to invalid
14. set T.RightChild.LeftNeighbour to invalid
15. end if

Algorithm 5.1: Triangle Split.

The xSplit function performs the actual splitting process.

 Section 5.2 Merge Algorithm 25

Algorithm xSplit
Input: • An unsplit nonleaf triangle T in a triangle bintree.
Output: • An updated triangle bintree, where T is split and all necessary force splits are performed.
1. T.LeftChild.LeftNeighbour := T.RightChild
2. T.RightChild.RightNeighbour := T.LeftChild
3. T.LeftChild.BaseNeighbour := T.LeftNeighbour
4. T.RightChild.BaseNeighbour := T.RightNeighbour
5. if T.LeftNeighbour is valid then
6. if T.LeftNeighbour.BaseNeighbour = T then
7. T.LeftNeighbour.BaseNeighbour := T.LeftChild
8. T.LeftNeighbour.Parent.RightNeighbour := T.LeftChild
9. else
10. T.LeftNeighbour.RightNeighbour := T.LeftChild
11. end if
12. end if
13. if T.RightNeighbour is valid then
14. if T.RightNeighbour.BaseNeighbour = T then
15. T.RightNeighbour.BaseNeighbour := T.RightChild
16. T.RightNeighbour.Parent.LeftNeighbour := T.RightChild
17. else
18. T.RightNeighbour.LeftNeighbour := T.RightChild
19. end if
20. end if
21. set T.LeftChild.LeftChild to invalid
22. set T.LeftChild.RightChild to invalid
23. set T.RightChild.LeftChild to invalid
24. set T.RightChild.RightChild to invalid

Algorithm 5.2: xSplit.

5.2 Merge Algorithm
The force-split operation was introduced by Duchaineau et al. [6] as a part of the split operation. Recall
from Section 4.2 that, if two unsplit triangles T and TB are both from the same level in a triangle bintree,
the pair (T, TB) is said to be a diamond. To split a triangle T, it has to form a diamond with its base
neighbour TB. If (T, TB) does not form a diamond, i.e. T and TB are not both from the same level in the
triangle bintree, TB has to be force-split first.

The merge operation is the opposite of the split operation. If T and its base neighbour TB are split
once, then (T, TB) is referred to a mergeable diamond. A merge operation is only defined on mergeable
diamonds. If a mergeable diamond is merged, the children of T and TB are removed. The mergeable
diamond (T, TB) is transformed to a simple diamond in the process.

This is an unnecessary complex concept of split and merge operations that is restricted to diamonds
and mergeable diamonds. It is possible to redefine the merge operation without any need to consider
diamonds or mergeable diamonds. Any previously split triangle may be merged so that all its children
are removed. In order to maintain continuity and avoid cracks, all neighbouring triangles have to be
merged too. This is a simple recursive process, which is called a force-merge operation. Figure 5.1
shows a triangle on the left that is to be merged. On the right, all its children have been removed and the
neighbouring triangles have been forced-merged.

26 Chapter 5 ROAM Algorithm and Implementation Aspects

(a) (b)

Figure 5.1: The force-merge process that merges the children of an arbitrary triangle.

There are several benefits of the new force-merge operation. First, it is very easy to understand and
implement. There is no need to introduce concepts like diamonds or mergeable diamonds. Second, it is
more powerful than the old merge operation. Previously, only triangles that were part of a mergeable
diamond could be merged. These triangles always had to have two leaf children and a base neighbour
with two leaf children. No other triangles could be merged. The new merge operation can merge any
nonleaf triangle in the bintree. Third, any implementation of the new merge operation will run faster,
since there is no bookkeeping on diamonds and mergeable diamonds. In addition, what previously may
have taken several merge operations can now be done in one single operation.

The criticism behind frame-coherent algorithms is that they are very slow if two consecutive frames
differ too much. Duchaineau et al. solved this problem by relying on a frame-incoherent algorithm
(Algorithm 4.1) in these cases. With the new force-merge algorithm, there is no need to switch to a
frame-incoherent algorithm. It will be just as fast as frame-incoherent algorithms in these special cases.

However, the original priority-computation deferral algorithm is not compatible with this merge
operation and no alternative has been found. Merging a single triangle involves nothing more than
removing its children. The force-merge process then merges the children of the three neighbours of the
triangle in a similar way.

Algorithm Triangle Merge
Input: • A split nonleaf triangle T in a triangle bintree.
Output: • An updated triangle bintree, where the children of T are merged and all necessary force
 merges are performed.
1. set T.LeftChild to invalid
2. set T.RightChild to invalid
3. if T.LeftNeighbour is valid then
4. if T.LeftNeighbour.RightNeighbour = T.LeftChild then
5. T.LeftNeighbour.RightNeighbour := T
6. else
7. Merge(T.LeftNeighbour.Parent)
8. T.LeftNeighbour.BaseNeighbour := T
9. T.LeftNeighbour.Parent.RightNeighbour := T
10. end if
11. end if

 Section 5.3 Main Algorithm 27

12. if T.RightNeighbour is valid then
13. if T.RightNeighbour.LeftNeighbour = T.RightChild then
14. T.RightNeighbour.LeftNeighbour := T
15. else
16. Merge(T.RightNeighbour.Parent)
17. T.RightNeighbour.BaseNeighbour := T
18. T.RightNeighbour.Parent.LeftNeighbour := T
19. end if
20. end if
21. if T.BaseNeighbour is valid then
22. if T.BaseNeighbour is split then
23. Merge(T.BaseNeighbour)
24. end if
25. end if

Algorithm 5.3: Force merge.

5.3 Main Algorithm
The split and merge algorithms are used by a main algorithm that is called once a frame for each active
triangle bintree. During the previous frame, a triangle bintree and the corresponding triangulation were
determined. If the view-dependent variances have not changed too rapidly, the triangle bintree of this
frame will almost equal the previous frame. Therefore, the main algorithm assumes there is an existing
triangle bintree for all frames but the first that only needs to be updated due to the view differences from
the last frame.

The main algorithm traverses the tree and examines each triangle to decide whether it has been split
or not. If it has not been split, then if the view-dependent variance exceeds a given limit, it is split and
the algorithm continues to its children. If it has been split, then if the view-dependent variance is below a
given limit, it is merged and the traversing stops at that node.

Algorithm Main
Input: • The root triangle T in a triangle bintree.
Output: • An updated triangle bintree, where all triangles are split, merged, or left as they are.
1. if not (T is within the view frustum and T was within the view frustum in the previous frame or
2. T is outside the view frustum and T was outside the view frustum in the previous frame) then
3. if T is split then
4. if T should be merged then
5. Merge(T)
6. else
7. Main(T.LeftChild)
8. Main(T.RightChild)
9. end if
10. else
11. if T should be split then
12. Split(T)
13. Main(T.LeftChild)
14. Main(T.RightChild)
15. end if
16. end if
17. end if

Algorithm 5.4: Main.

28 Chapter 5 ROAM Algorithm and Implementation Aspects

5.4 Implementation Aspects

5.4.1 Bintree Data Structure
The following fields are required for the bintree node data structure:

• Pointer to left neighbour
• Pointer to right neighbour
• Pointer to base neighbour
• Pointer to left child
• Pointer to right child
• Indices to left vertex position
• Indices to right vertex position
• Indices to apex vertex position
• Variance
• View-frustum data
• Priority-computation deferral data

The purpose of the left, right, and base neighbour pointers is to support the force-split and force-
merge process. The pointers to the left and right children are necessary for traversing the triangle bintree.
The indices to the positions for the left, right, and apex vertices in the height field are required when the
triangles are sent for display. The variance field contains a view-independent precomputed variance, on
which the screen-space geometric error computation is based. The variance field should only be present
in the node if the bintree is implemented as an implicit binary tree since it is very inefficient to
recompute the variance during run-time. Otherwise, the variance field should be stored in another tree.
The view-frustum data contains the IN, OUT, ALL-IN, and DONT-KNOW flags. The priority-
computation deferral data contains a nonnegative integer that indicates the number of frames that a
priority computation can be deferred.

5.4.2 Implicit Binary Tree
By using an implicit binary tree, the left and right child pointers in the bintree nodes are unnecessary and
the pointers to the left, right, and base neighbours are replaced by array indices. An implicit tree is also
faster traversed than a dynamic tree since no pointers have to be dereferenced. In addition, no memory
has to be allocated or deallocated during dynamic expansion or compression, which speeds up the split
and merge process. The drawback is that implicit binary trees require a large amount of preallocated
memory but this is no problem for Ericsson Saab Avionics AB. Therefore, the prototype has been
developed using implicit binary trees rather than dynamic binary trees.

Another solution is to compromise between the speed of implicit binary trees and the low memory
consumption of dynamic binary trees. A tree can be preallocated for all but the last few levels to an
implicit binary tree. The last levels of the tree are allocated dynamically as needed. Extra speed is gained
if the memory allocation is handled internally by keeping another preallocated array. The memory in this
array can then be dynamically used to tree nodes.

5.4.3 Split and Merge Operations
Although both the split and merge algorithms are given in recursive forms, they have been implemented
iteratively to avoid function call overheads.

5.4.4 Split and Merge Queues
The split and merge priority queues have not been implemented due to time constraints. However, the
improved merge operation reduces the need for such queues. The major benefit of priority queues is
progressive optimisation, which is rarely necessary to use.

 Section 5.4 Implementation Aspects 29

5.4.5 View-Frustum Culling
The view-frustum culling has been implemented almost as described by Duchaineau et al. The only
difference is that no node inherits the parameters of the parent. This has been done because of time
constraints but it only reduces the frame rate slightly.

As can be seen in Chapter 6, the overhead of computing the six clipping planes for each frame is
compensated by the reduction of triangles.

5.4.6 Triangle Count
A desired number of triangles per frame can be achieved by dynamically changing a priority cut-off
value. Normally a triangle is split during frame f only if its view-dependent variance exceeds a given
floating-point number εf. The number of created triangles c is therefore dependent of εf. If the desired
number of triangles d differs from c, a new value of ε can be recomputed by the equation

 1−= ff d

c εε (5.1)

If the view position remains unchanged, Equation 5.1 will be computed iteratively and converge to a
value that produces the desired triangle count.

30 Chapter 6 Results

6 RESULTS
The prototype generates ROAM terrain at high speeds. In Figure 6.1, the triangles close to the observer
are significantly smaller than those triangles that are farther away. The sizes of the triangles’ projection
to the screen are still the same. The terrain has been generated from a height map of 129×129 height
samples. 1200 triangles are being rendered each frame, which have reduced almost all visible popping
artefacts. The total number triangles present in the bintree is however much larger. The view-frustum
culling removes most of the triangles.

Figure 6.1: ROAM generated terrain.

The characteristics of ROAM are apparent in both Figure 6.1 and Figure 6.2. All triangles are right
isosceles and the pattern by which the triangles are split and merged is visible. There are no cracks
present and the level of detail is continuous.

Figure 6.2: Top view of ROAM generated terrain.

 Section 6.1 Performance 31

6.1 Performance
Performance measurements of the ROAM prototype are made on a Dell Dimension XPS T600 with an
Intel 600 MHz Pentium III processor, 256 MB of memory, and an nVidia TNT2 M64 graphics card
under Microsoft Windows 98.

The source code has not been optimised. Triangle stripping is not implemented. Instead, vertex
arrays are created during every frame, which decreases the frame rate. The view-frustum culling is not
identical to the one by Duchaineau et al. The differences are explained in Section 5.4.5.

6.1.1 Frame Rates
Table 6.1 compares the frame rates at different speeds of the observer.

Speed Frame rate (fps) Triangles

Standing still 105 1230
Medium speed 97 1190
High speed 91 1160

Table 6.1: Frame rate as function of speed. A height map of 129*129 height samples
has been used.

As can be seen in Table 6.1, the frame rate drops at higher speed. This is a result from the exploitation of
frame-to-frame coherence. The more triangle changes there are per frame, the more computations are
required by ROAM.

Frame rates

0
20
40
60
80

100
120
140
160

0 2000 4000 6000 8000 10000

Triangles

ROAM

No view-frustum culling

No frame-to-frame coherence

Figure 6.3: Frame rates with and without frame-to-frame coherence and view-frustum
culling. ROAM displays the frame rate of the prototype with all optimisation methods
included. The second series has turned off the view-frustum culling and the third does
not exploit frame-to-frame coherence.

32 Chapter 6 Results

The view-frustum culling process removes all triangles that are not visible to the observer. Time is
saved by not including the triangles that are outside the view frustum in the vertex array and sending
them to the graphics pipeline. However, including view-frustum culling requires the computation of six
clipping planes and tests for all vertices of each triangle against all six clipping planes. Performance
results have shown that the computation of the six clipping planes require only 0.1% of the total view-
frustum culling process. Figure 6.3 shows the frame rates with and without view-frustum culling.

If frame coherence is not exploited, the only elementary triangle operation that is necessary is the
split operation. A frame-incoherent version of ROAM resets the triangle bintree every frame and splits
the triangles until the maximum error of all triangles is below a given threshold. Figure 6.3 shows the
frame-rate differences between a frame-coherent and a frame-incoherent version.

There is a significant difference in frame rate between a frame-to-frame coherent algorithm and an
incoherent algorithm at low triangle counts. The frame-to-frame coherent algorithm is three times as fast
as the incoherent algorithm at 2500 triangles per frame. The difference decreases at higher triangle
counts. This is simply because the graphics pipeline requires more of the frame time to render all
triangles.

View-frustum culling increase the frame rate by 35% at 2500 triangles per frame. The difference
decreases at lower triangle counts since the overhead of computing six clipping planes is not
compensated by the reduction of triangles. The difference does also decrease at higher triangle counts by
the same reason as the difference between a frame-to-frame algorithm and an incoherent algorithm
decreases. The graphics pipeline requires most of the frame time to render a large number of triangles.

6.1.2 Function Timing
The run time can be divided into three steps. The first step is performed by the ROAM algorithm, which
executes all triangle splits and merges including view-frustum culling and priority computation. The
second step generates the vertex arrays, while the third step renders the triangles. Table 6.2 shows the
run-time per frame of these three steps.

Functions Time/frame (ms)

ROAM 11.8
- Triangle split and merges - 1.4
- View-frustum culling - 8.5
- Priority computation - 1.9
Vertex-array generation 0.9
Triangle rendering 2.9
Other 1.3

Total 16.9

Table 6.2: Time spent on the ROAM algorithm, vertex-array generation, and triangle
rendering.

The other functions include the I/O and window management in the visualisation engine. Although the
view-frustum culling requires 50% of the total frame time, it increases the frame rate as indicated by
Figure 6.3. Duchaineau et al. have reached a view-frustum culling implementation that only requires
33% of the ROAM algorithm. The difference between the implementations is the reason behind the
results. Optimising the view-frustum culling to a level that is equivalent to Duchaineau. et al. will
increase the frame rates by 41%. Including triangle stripping and priority-computation deferral will
increase the frame rates further.

 Chapter 7 Summary and Conclusion 33

7 SUMMARY AND CONCLUSION
Terrain generators have been surveyed and categorised into six groups. Several terrain generation
algorithms have been evaluated and two of them, view-dependent progressive meshes (VDPM) and real-
time optimally adapting meshes (ROAM), have been discussed further. VDPM generates general
triangulated irregular networks, while ROAM generates networks that only consist of right-isosceles
triangles. A prototype based on ROAM has been implemented, which shows good results although much
optimisation work remains.

Compared to traditional terrain models, real-time terrain generators can provide drastic time savings
at virtually no cost. Terrain models will take weeks to produce while a height map can be created in a
few days. If real map data is used, time and cost savings are even better. T3SIM will use digital height
and map data to produce terrain in real time. Another important benefit is the support of continuous level
of detail. Traditional discrete levels of detail suffer from visual artefacts when switching from one level
of detail to another. Several methods have been proposed to reduce the artefacts, but none has proven
sufficient. Continuous level of detail changes the number of triangles and the sizes of the triangles
continuously and removes any visual artefacts. A third advantage of terrain generators is that the terrain
can be easily altered in real time.

ROAM has shown to generate a triangle mesh faster than VDPM. ROAM only needs to morph one
vertex per triangle while VDPM needs to morph two. The validity of a ROAM elementary mesh
operation is faster evaluated. ROAM avoids slivers automatically, while VDPM need extra computations
to guarantee their absence. In addition, VDPM always introduce temporary slivers during vertex
morphing. However, the largest reason for choosing ROAM instead of VDPM is that its time complexity
is proportional to the number of triangle changes while VDPM time complexity it proportional to the full
output mesh size.

A new merge operation has proven to simplify the frame-coherent split and merge process. It can
merge the children of any nonleaf triangle. Since the original ROAM time complexity is proportional to
the number of triangle changes per frame, frames that have to make many splits and merges will need
longer frame times. These cases commonly occur when the observer travels fast or makes a quick turn.
In future versions of T3SIM, where air-combat simulations within visual range will be included, aircrafts
will fly on low altitudes at high velocities. The new merge operation is suitable for these situations, since
it decreases the frame times of incoherent frames.

The incremental view-frustum culling increases frame rates, and is therefore an important part of
ROAM. It is necessary to include in order to achieve high frame rates.

Hand-modelled terrain is not scalable. There will be a continuous need for increasing the level of
detail of the terrain when hardware performance improves. On the other hand, ROAM and all other
terrain-rendering algorithms are scalable and will improve the terrain with higher processor speeds.

Thus, real-time terrain generators that support continuous level of detail are superior to traditionally
modelled terrain. ROAM has shown to be the fastest of all current terrain-rendering algorithms. T3SIM
will therefore gain from using a product that is based on ROAM and map data.

Future work includes implementing the split and merge priority queues for progressive optimisation
and exploit triangle stripping instead of vertex arrays. Incorporating priority-computation deferral,
backface culling, and occlusion culling would reduce triangle counts further.

34 References

REFERENCES
[1] J. F. Barnes, A data-dependent triangulation for hierarchical rendering, UC Davis Student

Workshop on Computing, Sept. 1997.

[2] M. de Berg and K. T. G. Dobrindt, On levels of detail in terrains, In Proc. 11th Annual ACM Symp.
on Computational Geometry, Jun. 1995.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational geometry:
algorithms and applications, Springer-Verlag, 1997.

[4] P. Blekken and T. Lilleskog, A comparison of different algorithms for terrain rendering, Spring
semester project at CS Dept., Norwegian U. of Science and Technology, 1997.

[5] B. Chazelle, Triangulating a simple polygon in linear time, In Proc. 31st Annual IEEE Symp. of
Computer Science, pages 220-230, Oct. 1990.

[6] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein, ROAMing Terrain: Real-time optimally adapting meshes, In Proc. Visualization ’97,
pages 81-88, 1997.

[7] Ericsson Saab Avionics AB, Gripen display system, 1998.

[8] Ericsson Saab Avionics AB, T3SIM – training & tactical technical development simulation
system, 1998.

[9] Ericsson Saab Avionics AB, T3SIM system overview, 1999.

[10] R. E. Fayek, 3D surface modeling using hierarchical topographic triangular meshes, Ph.D
Thesis, U. of Waterloo, 1996.

[11] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer graphics: principles and
practice, Sec. Ed. in C, Addison-Wesley, 1996.

[12] M. Garland and P. S. Heckbert, Fast polygonal approximation of terrains and height fields, Tech.
Rept. CMU-CS-95-181, CS Dept., Carnegie Mellon U., Sept. 1995.

[13] M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics, In Proc.
SIGGRAPH ’97, pages 209-216, Aug. 1997.

[14] A. Guéziec, Surface simplification with variable tolerance, In Proc. of the Sec. Int. Symp. on
Medical Robotics and Computer Assisted Surgery, MRCAS ’95, Nov. 1995.

[15] P. S. Heckbert and M. Garland, Multiresolution modeling for fast rendering, In Proc. Graphics
Interface ’94, pages 43-50, Banff, Canada, Canadian Inf. Proc. Soc., May 1994.

[16] P. S. Heckbert and M. Garland, Survey of polygonal surface simplification algorithms, In
Multiresolution Surface Modeling Course Notes, ACM SIGGRAPH, 1997.

[17] H. Hoppe, Efficient implementation of progressive meshes, Computers and Graphics, Vol. 22, No.
1, pages 27-36, 1998.

[18] H. Hoppe, New quadric metric for simplifying meshes with appearance attributes, IEEE
Visualization ’99, Oct. 1999.

[19] H. Hoppe, Progressive meshes, In Proc. SIGGRAPH ’96, pages 99-108, Aug. 1996.

[20] H. Hoppe, Smooth view-dependent level-of-detail control and its application to terrain rendering,
IEEE Visualization ’98, Oct. 1998.

[21] H. Hoppe, View-dependent refinement of progressive meshes, In Proc. SIGGRAPH ’97, pages
189-198, Aug. 1997.

[22] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Mesh optimization, In Proc.
SIGGRAPH ’93, pages 19-26, 1993.

 References 35

[23] T. Lilleskog, Continuous level of detail, Master’s thesis, CS Dept., Norwegian U. of Science and
Technology, Feb. 1998.

[24] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust and G. A. Turner, Real-time,
continuous level of detail rendering of height fields, In Proc. SIGGRAPH ’96, pages 109-118,
Aug. 1996.

[25] S. McNally, Binary triangle trees and terrain tessellation, Longbow Digital Arts, Aug 1999,
URL: http://www.longbowdigitalarts.com/seumas/progbintri.html

[26] M. C. Miller, Multiscale compression of digital terrain data to meet real time rendering rate
constraints, PhD Thesis, U. of California, Davis, 1995,

[27] F. P. Preparata, M. I. Shamos, Computational geometry: an introduction, Springer-Verlag, 1998.

[28] S. Röttger, W. Heidrich, P. Slusallek and H. Seidel, Real-time generation of continuous levels of
detail for height fields, 6th Int. Conf. in Central Europe on Computer Graphics and Visualization
’98, Feb. 1998.

[29] M. Woo, J. Neider, T. Davis, OpenGL programming guide, Third. Ed., Addison-Wesley, 1999.

[30] J. C. Xia, A. Varshney, Dynamic view-dependent simplification for polygonal models, In Proc.
Visualization ’96, pages 327-334, IEEE Comput. Soc. Press, 1996.

[31] A. Ögren, Illumination and shading models, In Proc. USCCS&I'99, Jun. 1999.

 Section A.1 Quadtree A-1

APPENDIX A: COMPUTATIONAL GEOMETRY CONCEPTS

A.1 Quadtree
A quadtree is a rooted quaternary tree that hierarchically subdivides a rectangular area containing a set
of points. For the purpose of terrain rendering based on a regular square grid of height samples, the
rectangular area is restricted to a square and the set of points is restricted to a regular grid of (n+1)2
equally spaced height samples. Usually, n = 2k, for some nonnegative integer k.

The root node corresponds to the whole square, while its four children each correspond to a quadrant
of the square. The definition is recursive, i.e. each internal node of the quadtree corresponds to a square
region, while the four children each correspond to a quadrant of the parent square. Every internal node is
labelled NE, NW, SW, and SE, to indicate the specific square they represent.

The construction of a quadtree takes Ο(n2) time and uses Ο(n2) space, i.e. it is linear in the number
of input points [3, 27].

A quadtree is suitable for simple structure- and view-dependent multiresolution triangulations of
terrain. Low-level nodes correspond to a rough triangulation, while high-level nodes correspond to finer
triangulations. A quadtree can be constructed off-line, but it is traversed for each frame. The recursion is
stopped as soon as a suitable level of detail is found. An example of a quadtree is shown in Figure A.1.
Each square is triangulated according to a predetermined scheme.

Figure A.1: A quadtree with higher resolution at regions down to the right.

The generalisation of a quadtree into three dimensions is known as an octree, of which each node
corresponds to a cubic region.

A.2 Kd-tree
Given a finite set of real numbers P, a common problem is to find which elements lie within a specified
interval. This is known as an orthogonal range query. A straightforward solution is to check each point
against the interval, resulting in a linear time algorithm. A faster solution would be to store the numbers
in a simple binary search tree, which reduces the time complexity to Ο(logn + k), where n is the number
of elements in P and k is the number of retrieved points [3].

An extension to this problem is, given a finite set of points P in the plane, to find all points within a
specified rectangle. The points can be height samples in a terrain-rendering algorithm or vertices in a
triangle mesh.

A-2 Appendix A: Computational Geometry Concepts

A kd-tree, known as a multidimensional binary tree, is also stored as a binary search tree, but it is
interpreted differently. For the application described above, each internal node stores a line splitting the
plane into two parts. These lines are orthogonal, but normally only considered vertical and horizontal.
The root node contains a vertical line through the median x-coordinate of the points in P, which splits
the plane into a left and right region. The left child node contains a horizontal line through the median y-
coordinate of the points in the left region, which splits the left region into an upper and lower region.
Similarly, the right child node contains a horizontal line through the median y-coordinate of the points in
the right region, which splits the right region into an upper and lower region. This process continues
splitting the plane with vertical lines at nodes of even depth and horizontal lines at nodes of odd depth
[3, 27]. Figure A.2 illustrates an example of plane subdivision and the corresponding kd-tree.

l 1

l 6

l 5

l 4

l 2

l 3

l 1

l 3l 2

l 3l 3l 4 l 6l 5

p 7

p 5 p 6

p 4p 3

p 2p 1

p 5

p 1 p 2
p 3 p 4 p 7 p 6

(a) (b)

Figure A.2: a) A plane subdivision. b) The corresponding kd-tree.

Originally, k stood for the dimension of the tree, which in this case is two. Nowadays, however, they
are called 2-dimensional kd-trees.

The retrieval time complexity of a kd-tree is of Ο(kn +), where n is the number of points in the
plane and k is the number of retrieved points. It uses Ο(n) storage and can be constructed in Ο(nlogn)
time. The retrieval time is more important, since it is a real-time process, as opposed to the construction
time.

A.3 Range tree
A range tree is a multi-level binary tree that improves the retrieval time of kd-trees. A kd-tree alternates
the splitting process on x- and y-coordinates. A range tree, on the other hand, controls the splitting
process by storing subtrees at each node. The query of finding all points with an x-coordinate within a
specified range can be done in time complexity Ο(logn + k). Since the range is continuous, the output
points belongs to a number of canonical subsets, each of which is associated to a node and contains all
points in the subtree of that node. For example, the canonical subset of the root node contains all points,
while the canonical subset of a leaf contains only the point associated with that leaf [3].

Each node in the tree contains its associated canonical subset stored as a balanced binary search tree
on the y-coordinates of the points. The main tree is called the first-level tree, while the canonical-subset
trees are known as second-level trees. A range tree can easily be extended to include more dimensions.

Although this requires Ο(nlogn) storage, it improves retrieval time to Ο(log2n + k). A technique
known as fractional cascading can improve retrieval time further to Ο (logn + k). Thus, range trees
improve performance over kd-trees at the cost of increased storage.

A.4 Voronoi Diagram
The Voronoi diagram can be defined for any number of dimensions, but since terrain-rendering
algorithms are based on planar input, this short summary is restricted to the two-dimensional case. The

 Section A.4 Voronoi Diagram A-3

Voronoi diagram of a finite set of two-dimensional points P = {p1, p2, ..., pn} ⊆ ℜ2 is a subdivision V =
{ v1, v2, ..., vn} of ℜ2 with p ∈ vi implicates

 jippppp jji ≠∈∀−<− ,
22

P , (A.1)

i.e. each set vi ∈ V consists of all points that is closer to pi than any other point in P. The Voronoi
diagram of P is denoted Vor(P). Each set vi in V is called a Voronoi cell or a Voronoi polygon, and is
denoted V(pi). The points in P are called sites [3, 27]. A set of sites and their corresponding Voronoi
diagram is shown in Figure A.3.

A bisector of two sites p, q ∈ P is defined as the perpendicular line of the straight line passing
through both p and q. This bisector splits the plane into two halves, of which one contains p and one
contains q. The distance from the bisector to p equals the distance to q. Define h to be a function by
setting h(u, v) to the open half-plane defined by the bisector of u and v that contains u. This yields r ∈
h(u, v) if and only if

22

vrur −<− . (A.2)

Thus

),()(
,1

ji
ijnj

i pphpV
≠≤≤

= � , (A.3)

i.e. V(pi) is the open convex polygonal region defined by the intersection of n−1 half-planes as illustrated
in Figure A.3. The edges of the polygonal region either are line segments, half lines, or full lines. If the
region is bounded, it consists only of line segments, while if it is unbounded, it also consists of at least
two half-lines. If all sites in P are collinear, all edges are full lines.

(a) (b)

Figure A.3: a) The Voronoi region for a point is the intersection of all halfplanes. b) A
Voronoi diagram.

Given a point q ∈ ℜ2, a largest empty circle of q with respect to P is the largest circle centred at q
that does not contain any points from P in its interior. Given this definition, it can be proven that a point
q is a vertex of Vor(P) if and only if the largest empty circle of q with respect to P contains three or
more sites on its boundary. Also, the bisector between two sites u and v in P contains an edge of Vor(P)
if and only if there is a point q ∈ ℜ2 such that the largest empty circle of q with respect to P contains
both u and v on its boundary but no other sites.

A-4 Appendix A: Computational Geometry Concepts

The Voronoi diagram can be computed by a plane sweep algorithm, known as Fortune’s algorithm,
in Ο(nlogn) time, which has been proven to be optimal [3, 27].

A.5 Polygon Triangulation
The triangulation of a polygon can be computed by a large number of algorithms. In 1990, B. Chazelle
developed a linear time algorithm [5]. This section presents a simpler Ο(nlogn) algorithm that
triangulates a simple polygon with n vertices. A simple polygon is a polygon that does not intersect
itself. It is easily proved that every simple polygon can be triangulated to n − 2 triangles [3].

Given a simple polygon P with n vertices, the algorithm creates a triangulation during two steps. The
first step partitions the polygon into a set of monotone pieces, while the other triangulates the pieces.

A.5.1 Partitioning a Simple Polygon into Monotone Pieces
A simple polygon is called monotone with respect to a line l if for any other line l´, perpendicular to l,
the intersection of the polygon with l´ is connected, i.e. the intersection is a line, a point, or empty. In
particular, a simple polygon is called y-monotone if it is monotone with respect to the y-axis.

Denote the y-coordinate of a point p by py. Similarly, denote the x-coordinate by px. A point p is
below another point q if py < qy or py = qy and px > qx. A point p is above a point q if q is below p.

The vertices of a polygon is distinguished into five categories:
1. A vertex v is a start vertex if its two neighbours lie below it and the interior angle at v is less

than π.
2. A vertex v is a split vertex if its two neighbours lie below it and the interior angle at v is greater

than π.
3. A vertex v is an end vertex if its two neighbours lie above it and the interior angle at v is less

than π.
4. A vertex v is a merge vertex if its two neighbours lie above it and the interior angle at v is greater

than π.
5. A vertex v is a regular vertex if it is none of the above, i.e. v has one neighbour lying above and

the other below.

The first four types, i.e. start, split, end, and merge vertices, are called turn vertices. A polygon with
vertices from all five categories is shown in Figure A.4 (a).

De Berg et al. [3] have shown that a polygon is y-monotone if and only if it has neither split nor
merge vertices. Thus, all split and merge vertices have to be removed to obtain a partition of monotone
polygon pieces.

The split vertices are removed by sweeping from the topmost vertex down to the lowest. If a split
vertex v is found, let ej be the edge immediately to the left of v and ek be the edge immediately to the
right of v. Connect v to the lowest vertex between ej and ek, but above v, or, if no such vertex exist,
connect v to the upper vertex neighbour of ej.

The merge vertices are removed in a similar matter. If a merge vertex u is found, let ej be the edge
immediately to the left of u and ek be the edge immediately to the right of u, as before. Connect u to the
highest vertex between ej and ek, but below u. If no such vertices exist, connect u to the lower vertex
neighbour of ej.

Removing all split and merge vertices partitions P into a set of monotone polygons. The time
complexity of this algorithm is Ο(nlogn), while the space complexity is linear.

A.5.2 Triangulating a Monotone Polygon
Assume that P is strictly y-monotone, i.e. y-monotone without any horizontal edges. Construct two
chains, one consisting of all the vertices on the left side of P sorted from the top down and the other
consisting of all the vertices on the right side, also sorted from the top down. Construct a sequence u1, u2,

 Section A.6 Delaunay Triangulation A-5

..., un consisting of all vertices sorted by decreasing y-coordinate. If two vertices have the same y-
coordinate, the leftmost vertex precedes the other. Finally, use a stack S to store the vertices. The
algorithm is straightforward:

Push the first two vertices in the sequence onto S. Check each vertex ui left in the sequence to see if
it is on the other chain than the vertex on top of S. If so, pop all vertices from S and insert an edge from
ui to all popped vertices, except the last one. Push back the vertices ui and ui−1 onto the stack.

If the vertex on top of S is on the same chain as ui, then pop all vertices in S. Insert edges between ui
and all popped vertices except for the first, as long as they are inside P. Push back the vertex ui and the
last popped vertex onto S.

S ta rt
ve rtex

E n d
vertex

S p lit
ve rtex

M erge
vertex

R egu la r
vertex

u
vej

ek

u1

l

l '

(a) (b)

(c) (d)

u5

u9

u7

u11

u10

u8

u4

u6

u3

u2

u1

u2

u3 u4

u5 u6u7

u8

u9
u10

u11

Figure A.4: a) Start, regular, split, merge, and end vertices. b) Partitioning a simple
polygon into monotone polygons. c) Triangulating the upper monotone polygon. d)
Triangulating both monotone polygons.

The last step is to add edges from un to all vertices in the stack, except the first and last one. This
produces a triangulation of P in linear time.

Thus, this composite algorithm for triangulating an arbitrary simple polygon takes Ο(nlogn) time.

A.6 Delaunay Triangulation
The dual graph of the Voronoi diagram is the Delaunay graph [27]. Given a set of points P in the plane,
the Delaunay triangulation creates a triangle mesh from the Delaunay graph that maximises the
minimum angle of all triangles. Small angles cause slivers, which in turn can introduce large

A-6 Appendix A: Computational Geometry Concepts

approximation errors of terrain and aliasing problems for texture maps. Since the Delaunay triangulation
maximises the minimum angle of all triangles, it generally produces triangle meshes of better visual
quality than other methods.

Let T be a triangulation of a set of points P in the plane consisting of n triangles. Furthermore, let
A(T) denote the angle-vector (α1, α2, …, α3n) containing all 3n angles of the triangles in T, sorted by
increasing value. Let T ́be another triangulation of P with angle-vector A(T)́ = (α'1, α'2, …, α'3n). A(T)
is defined to be larger than A(T)́, denoted A(T) > A(T)́, if there is an i ∈ Z3n such that αj = α'j for all j <
i and αi > α'i. Other relational properties follow similarly.

A triangulation is called angle-optimal if A(T) ≥ A(T)́ for all triangulations T ́of P [3]. A Delaunay
triangulation will be shown an angle-optimal triangulation.

Consider a triangulation T of four points pi, pj, pk, and pl, with triangles (pi, pj, pl) and (pj, pk, pl) and
angles v1, v2, v3, v4, v5, and v6, as in Figure A.5. Let e be an edge between pj and pl Construct a new
triangulation T ́by flipping e to e´ between pi and pk, which changes the angles to v'1, v'2, v'3, v'4, v'5, and
v'6. The edge e is called illegal if

 ´

6161
minmin i

i
i

i
vv

≤≤≤≤
< . (A.4)

This definition applies to all non-boundary edges. A legal triangulation is a triangulation that does not
contain any illegal edges.

v
1

v
4

v
2

v
3

v5

v6 v
1
´

v 2´

v 3´
v

4
´

v
5
´

v6´

p
i

p
j

p k

p l

e e´

p
i

p
l

p
j

p k

Edge f l ip

Figure A.5: An edge flip operation.

Given a Voronoi diagram Vor(P) of P, the Delaunay graph of P, denoted DG(P), has a vertex at
each point in P and edges between any two vertices whose corresponding Voronoi cells in Vor(P) are
adjacent [27]. Figure A.6 (b) shows a Delaunay triangulation of the point set in Figure A.3 (b).

A finite set of points P ⊆ ℜ2 is in general position if there is no circle whose boundary contains four
points in P. If P is in general position, then all vertices in Vor(P) is of degree three, and as a
consequence, all bounded regions in DG(P) are triangles. In this case, the triangulation of P with edges
between every pair of points that are adjacent in DG(P) is known as the Delaunay triangulation of P. If
P is not in general position, then the Delaunay graph will contain a convex polygon with at least four
vertices. The Delaunay triangulation is extended to include triangulations of non-general point sets,
where the polygons are triangulated. The triangulation of a polygon was covered Section A.5. Thus, a
Delaunay triangulation of a set of points P is unique if and only if P is in general position [3].

There are three important properties of the Delaunay triangulation. Let T be a triangulation of a set
of planar points P.

1. T is a Delaunay triangulation if and only if the circumcircle of any triangle in T does not contain
a point of P in its interior.

2. T is legal if and only if T is a Delaunay triangulation of P.
3. If T is a Delaunay triangulation of P then it maximises the minimum angle over all triangulations

of P.

 Section A.7 Data-Dependent Triangulation A-7

(a) (b) (c)

Figure A.6: a) An arbitrary triangulation of the point set in Figure A.3 b). (b) A
Delaunay triangulation of the same point set. c) The underlying Voronoi diagram
shows that the Delaunay triangulation contains an edge between any two adjacent
sites.

There are several methods for computing a Delaunay triangulation of a set of planar points P.
Blekken et al. [4] divide the methods into five categories:

• Two-step algorithms are based on arbitrary triangulations but rearrange them into Delaunay
triangulations.

• Incremental algorithms are based on Delaunay triangulation on a subset of P, but refine the
triangulation while maintaining the Delaunay property when inserting new points.

• Divide-and-conquer algorithms construct the Delaunay triangulation by recursively splitting the
point set into two halves, constructing Delaunay triangulations for each half, and merging the
halves while maintaining the Delaunay property.

• Sweep-line algorithms compute the Voronoi diagram and transform it into a Delaunay
triangulation using a sweep line.

• Three-dimensional algorithms compute the three-dimensional convex hull of the point set and
project the lower portion onto the x-y plane.

There are two extensions to Delaunay triangulation. Constrained Delaunay triangulation is based on
a set of points P and a set of constrained edges E and is constructed by ensuring that the circumcircle of
each triangle does not contain any point of P that is visible from all three vertices of the triangle. A point
p1 is visible from a point p2 if the straight line between them does not cross the interior of any of the
edges in E. A constrained Delaunay triangulation does not necessarily fulfil the Delaunay property.

Conforming Delaunay triangulation improves the constrained Delaunay triangulation by adding
more points into P in order to fulfil the Delaunay property.

A.7 Data-Dependent Triangulation
While Delaunay triangulation uses two-dimensional information only, data-dependent triangulation
algorithms achieve more accurate approximations of the triangle meshes by considering the topology of
the terrain [10]. However, they generally introduce slivers, which Delaunay triangulation avoids by
maximising the minimum angle of all triangles. Slivers can introduce aliasing effects in texture maps,
which reduce the visual quality of the terrain.

Several papers survey many different data-dependent triangulation algorithms [1, 10, 12]. An
incremental Delaunay triangulation can be generalised to a data-dependent triangulation algorithm by
iteratively flipping the edges of the Delaunay triangulation. An edge is flipped if the new edge
approximates the terrain better than the previous. This introduces illegal edges and destroys the
Delaunay property in favour of error reduction. What triangulation algorithm that should be chosen
depends on the application and priority of visual quality and approximation error.

A-8 Appendix B: User Manual

APPENDIX B: USER MANUAL
The prototype, roam.exe, can be executed on any IBM compatible PC with an Intel Pentium III
processor running Microsoft Windows 95 or 98. The following three files must be copied to
C:\Windows\System\: glut.dll, glu.dll, and opengl32.dll.

Both the keyboard and the mouse can control the observer.

Key Action

0 Return to start position.

1 Accelerate.

2 Turn up.

3 Decelerate.

4 Rotate to the left.

5 Stop.

6 Rotate to the right.

7 Turn left.

8 Turn down.

9 Turn right.

Esc Exit

Table B.1: The keyboard control keys for the prototype.

By holding down the left or right mouse button and drawing the mouse at one of the four directions
controls the observer according to Table B.2:

Mouse button Mouse direction Action

Up Turn down.

Down Turn up.

Left Rotate to the left.

Left

Right Rotate to the right.

Up Accelerate. Right

Down Decelerate.

Table B.2: The mouse control for the prototype

 Appendix C: Glossary A-9

APPENDIX C: GLOSSARY

Backface culling The removal of primitives facing away from the observer, i.e.
those on the backside of an object.

Data-dependent triangulation A set triangulation methods that use the heights and other
information of a set of vertices to achieve a more accurate
triangulation than Delaunay triangulation.

Decimation methods Triangulation simplification methods that simplify an initial
triangulation containing all data points during multiple passes.
During each pass, a vertex, edge, or triangle is removed and the
mesh is retriangulated.

Delaunay triangulation A triangulation method that maximises the minimal angle of all
triangles. Constrained Delaunay triangulation is an extension to
Delaunay triangulation that includes a specified set of edges.
Conforming Delaunay triangulation is an extension to
constrained Delaunay triangulation, which adds vertices to
guarantee the Delaunay property.

Feature A vertex that contains important information about the terrain,
such as peaks, ridges and valleys. Also known as a critical
point.

Feature methods Triangulation simplification methods whose triangulations are
based on features only. Constrained Delaunay triangulation is
often used if certain edges have to be included.

Height field A two-dimensional regular grid of equally spaced height
samples.

Hierarchical subdivision methods Triangulation simplification methods that divide the terrain
recursively into regions to form a hierarchical tree, in which
each node represents a specific region of the terrain. The
children of a node together represent the same region as the
parent, but at higher level of detail.

Level of detail (LOD) Discrete level of detail is a method for displaying the same
object at different levels of detail from different distances.
Continuous level of detail is a method of computing the correct
level of detail for each region of an object. Different regions of
the object are displayed at different levels of detail
simultaneously.

Kd-tree A binary tree that recursively subdivides a space. Each node of
a k-dimensional kd-tree divides a k-dimensional space by a
(k−1)-dimensional plane. Two such planes in two nodes of level
i and j are orthogonal if i ≠ j.

Multiresolution modelling The modelling of an object at different discrete levels of detail.

Occlusion culling The removal of primitives occluded by other primitives and
therefore not visible to the observer.

Optimal methods Triangulation methods that find the optimal approximation of a
grid.

Polygon triangulation The division of a polygon into a triangle mesh.

A-10 Appendix C: Glossary

Popping An aliasing artefact appearing when changing from one discrete
level of detail to another.

Progressive Meshes (PM) A continuous level-of-detail method for view-dependent terrain
rendering.

Quadtree A quaternary tree that recursively divides an area to four equal
regions at each node.

Range tree A multi-dimensional binary tree. Each node contains another
binary tree.

Real-time Optimally Adapting
Meshes (ROAM)

A continuous level-of-detail method for view-dependent terrain
rendering.

Refinement methods Triangulation simplification methods that start with a coarse
approximation and refine it during multiple passes until the
appropriate amount of triangles is found or until an error goes
below a certain limit.

Regular grid methods Triangulation simplification methods that only use every kth
row and column of the height field as vertex set of the
triangulation.

Sliver A triangle with at least one very small angle.

T3SIM A flight simulator that is developed by Ericsson Saab Avionics
AB for tactical training in real-time man-in-the-loop air-combat
simulations.

Terrain The graph of a continuous function f:ℜ2→ℜℜ.

Tile A square area in a terrain that is represented by several levels of
detail.

Triangle fan/strip A set of triangles adjacent so that every new triangle adds one
new vertex. For n triangles, only n+2 vertices are necessary.
Long triangle strips or fans reduce rendering time. The
difference between a triangle strip and a triangle fan is the
composition of triangles.

Triangle mesh A mesh consisting only of triangles such that each edge is
adjacent to at most two triangles.

Triangulated irregular network
(TIN)

A triangle mesh that consists of non-overlapping variable-sized
triangles.

View-frustum culling The removal of all primitives outside the view frustum, i.e. a
bounded volume containing the observer’s field of view.

Voronoi diagram Given a set of points P in the plane, a Voronoi diagram is a
subdivision of the plane into regions such that each region is
associated to exactly one point in P and contains all points in
the plane that is closer to that point than any other.

Wedgie A volume that extends vertically above and below a triangle
with a thickness defined by children triangles.

