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ABSTRACT 

Terrain in flight simulators has traditionally been hand-modelled by artists. 
Ericsson Saab Avionics AB uses a hand-modelled terrain over Gotland for 
their flight simulator T3SIM. Hand-modelled terrain is expensive and has no 
support for continuous level of detail. This paper presents different methods 
for automatic terrain generation in real-time based on height data. Several 
algorithms have been proposed the past few years. However, only two are 
capable of real-time rendering with current demands on quality and speed. 
Those are view-dependent progressive meshes (VDPM) and real-time 
optimally adapting meshes (ROAM). Although, ROAM restricts the space of 
possible meshes, its execution time is proportional to the number of triangle 
changes per frame while the execution time of VDPM is only proportional to 
the full output mesh size. Some improvements and extensions to ROAM are 
presented, including a force-merge approach for merging arbitrary triangles. A 
prototype based on ROAM and the extensions has been implemented, which 
has shown to reduce the triangle-count compared to traditional methods. 
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1 INTRODUCTION 

A terrain may be defined as the graph of a continuous function f:R2→R [2]. In computer graphics, these 
graphs are usually represented by triangle meshes, i.e. connected sets of triangles in which no more than 
two triangles share an edge. It is not uncommon that a triangle mesh consists of several millions of 
triangles. No graphics workstation of today is capable of rendering such large triangle meshes at 
interactive frame rates. Therefore, the triangle count of large triangle meshes has to be reduced without 
deteriorating the visual appearance. 

Traditional triangle-reduction methods use a small set of discrete levels of detail that each represents 
the same object at different number of triangles. Simple visualisation systems compute the distance from 
the observer to an object and choose a level of detail for the entire object based on that distance. Other 
visualisation systems base the level of detail on the screen-space error of the object. If the distance or 
error changes beyond a certain limit, the whole object is rendered with another level of detail. 

There are two problems with triangle-reduction methods based on discrete levels of detail. First, 
large objects that may have some regions close to the observer and others more distant should be 
rendered at different levels of detail for the different regions. Terrain is an example of such an object. 
The horizon does not need to be rendered with as high detail as nearby parts. Second, changing from one 
level of detail to another leads to temporal aliasing artefacts known as popping. Three methods have 
been proposed to reduce the popping effects. A large number of levels of detail could be used. This 
reduces the difference between two consecutive levels of detail, but requires large storage space. 
Another alternative is to use very complex models with small screen-space errors. Although the 
difference between two consecutive levels of detail is large, the visible difference is small. However, this 
consumes unnecessary large amounts of rendering power. The last method morphs one level of detail to 
another, i.e. it either animates the vertex positions or blends in the new level of detail through several 
frames. This is also a computationally expensive task. 

Thus, triangle-reduction methods based on discrete level of detail are inadequate for terrain 
visualisation. Algorithms that support continuous level of detail address these problems by computing 
the appropriate level of detail for every triangle at each frame. Lindstrom et al. [24] give a more precise 
definition of continuous level of detail. Many of these algorithms exploit frame coherence to minimise 
the difference in triangulation of the terrain in the two frames. 

1.1 Background 
Ericsson Saab Avionics AB develops T3SIM (Training and Tactical/Technical Development Simulation 
System), a software system designed for tactical training in real-time man-in-the-loop air-combat 
simulations. Ericsson Saab Avionics AB uses the system in their EPSIM facility, shown in Figure 1.1, 
for prototyping, demonstrations, and evaluations in the development process. It is developed in co-
operation with the Swedish Air Force Air Combat Simulation Centre, who uses it for training and 
tactical development for various missions and threat scenarios that involve intercept elements [8, 9]. 

T3SIM is intended to perform multi-player air-combat simulations and supports functionality for 
tactical environment with computer-generated platforms, electronic warfare, combat command, and 
combat control. The system consists of a core system and five modules: master system control module, 
pilot station module, exercise observation and evaluation module, combat command and control module, 
and computer-generated forces module. These modules are operated on SGI computer workstations [9]. 
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Figure 1.1: A view of the EPSIM facility at Ericsson Saab Avionics AB. 

Today, T3SIM is primarily intended to perform air-combat simulations beyond visual range for JAS 
39 Gripen. This requires focus on the tactical instruments, flight-data display, horizontal-situation 
display, multi-sensor display, and head-up display. Figure 1.2 shows these instruments in the cockpit of 
a JAS 39 Gripen aircraft. The flight data display presents basic information such as attitude, speed, and 
altitude, while the tactical information is presented on the horizontal situation display by symbols 
representing friends, foes, targets, threats, obstacles, and guiding information, all of which is 
superimposed on a digital electronic map. The multi-sensor display provides different modes of sensor 
information, including air-to-air radar modes. Finally, the head-up display provides information for 
navigation and weapons control. It simulates a holographic diffraction optics combiner that presents the 
information within the pilot’s field of view. Since the tactical instruments are the main information 
providers, the visual presentation of surrounding environment has been lower prioritised [7, 9]. 

1.2 Problem description 
Future versions of T3SIM will include air-to-air and air-to-land combat simulations within visual range. 
This increases the requirements of the visual system. The terrain will play a major role in future 
simulations, since air-combat will take place at lower altitudes. Therefore, the system will require two 
features not available today: 

• Availability to simulate terrain for any region in Sweden and other countries of interest. 
• Support of high-quality terrain during low-altitude flights at constant frame rates. 

The first requirement enables air-combat training in any region for which height and map data is 
available, while the second requires terrain rendered with continuous level of detail. 

The terrain used today is a hand-made model of Gotland, which is shown in Figure 1.3. Most regions 
are only modelled as a flat landscape of a coarse triangle mesh textured with flight photographs. While 
this is acceptable for high-altitude flights, it does not provide the visual quality required for future low-
altitude flights. 
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Figure 1.2: On the left is the flight data display, on the middle the horizontal situation 
display, on the right the multi-sensor display, and straight ahead is the head-up display. 

It has not only been very expensive and time-consuming to build this model; it does also limit the 
application to Gotland. In addition, T3SIM lacks support of continuous level-of-detail rendering, which 
restricts the terrain to very flat areas. Rougher terrain would require more and smaller underlying 
triangles, which are too computationally expensive to render. 

A solution to the problems is to develop a program that generates terrain from height and map data. 
The National Land Survey of Sweden provides height data in square areas of 50×50 kilometres, stored as 
height samples in a regular grid with 50 metres spacing. The map data is stored in layers, each 
describing a vegetation type, such as woods and lakes, represented by two-dimensional polygons that 
encapsulate the vegetation type. Other map information such as roads is stored as lines. Finally, some 
information is described as points, e.g. houses and lighthouses. 

This program could read the height samples and map data and, given a position and view direction 
of the observer, generate a three-dimensional terrain in real time that the observer would see. This thesis 
is restricted to terrain rendering based on height data. The purpose is to investigate the algorithms that 
create a triangle mesh that supports continuous level of detail and build a prototype based on one of 
these algorithms. 

1.3 Outline 
Section 2 discusses the requirements of terrain-rendering algorithms and surveys existing algorithms. 
The desired properties of these algorithms are documented. The algorithms are categorised into six 
groups, each with its own advantages and drawbacks. Two algorithms are found to be candidates for 
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further investigation, view-dependent progressive meshes (VDPM) and real-time optimally adapting 
meshes (ROAM). These are covered in Section 3 and 4. 

 

Figure 1.3: A view of the modelled terrain of Gotland in T3SIM. 

Section 3 describes progressive meshes in detail. Progressive meshes have been developed by 
Hugues Hoppe [17, 18, 19, 20, 21] to produce a triangulated irregular network from a set of height 
samples. Progressive meshes have been shown to minimise the number of triangles necessary to 
approximate a height field at a given error bound. 

Section 4 discusses real-time optimally adapting meshes. ROAM was developed by Duchaineau et 
al. [6] in 1997. The triangles are represented hierarchically in a binary tree, which facilitates fast 
retrieval of individual triangles and view-frustum culling. The neighbours to each triangle are stored in 
every triangle node in order to avoid cracks by force-splitting triangles. Two optimisation methods are 
introduced with ROAM, incremental triangle stripping and priority-computation deferral lists. 

ROAM has shown to be more suitable for real-time terrain rendering. A prototype has been 
developed that implements a version of ROAM. Section 5 discusses the implementation. An algorithm 
has been developed that introduces a new, more general, version of the merge operation. This algorithm 
is discussed together with other algorithms that control the split and merge process. 

Results from the implementation are given in Section 6. 

In Appendix A, some fundamental computational geometry definitions and concepts are explained. 
Several terrain-rendering algorithms use data types based on quadtrees, kd-trees and range trees. These 
are shortly explained together with a time and space complexity summary. Three common triangulation 
methods, Delaunay triangulation, data-dependent triangulation, and polygon triangulation are also 
covered. 

Appendix B presents a short user manual for the prototype that has implemented the ROAM 
algorithm together with the improvements and extensions presented in Section 5. 

Appendix C contains a glossary of common concepts within the field of computational geometry and 
terrain rendering. Only selected words are included. 
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2 SURVEY OF TERRAIN-RENDERING ALGORITHMS 
This Section surveys previous efforts in the area of terrain-rendering algorithms based on regular grids 
of equally spaced height samples. A terrain-rendering algorithm should maximise the visual quality of 
the terrain at interactive frame rates. More specifically, the following properties should be included: 

• Support of several levels of detail for different regions of the terrain simultaneously. 
• Avoidance of cracks and shading discontinuities between regions of different levels of detail. 
• Minimisation of object-space or screen-space error bounds. 
• Reduction of popping artefacts. 
• Maintenance of strict frame rates. 
• Minimisation of the number of rendered triangles. 
• Compact representation of the triangle mesh with support of fast retrieval of individual triangles. 
• Capability of creating long triangle strips or fans. 
• Support of view-frustum, backface and occlusion culling. 
• Exploitation of frame-to-frame coherence in order to minimise triangulation time. 
• Reduction of execution-time overhead. 
• Reduction of memory requirements. 

The first four properties improve the visual quality while the latter eight improves the performance. 
Most important is support of dynamic continuous level of detail. The level of detail should be based on 
both the position of the observer and the structure of the terrain. Distant regions of the terrain will have 
less impact on the final visual result because of perspective foreshortening. Unnecessary amounts of 
geometry for distant regions are more of a liability than an asset. Not only do such geometry consume 
valuable rendering power; it can also produce z-buffer accuracy problems and aliasing artefacts [4]. 
Thus, distant or flat terrain should be simplified more than nearby or rough terrain. 

(a) (b)
 

Figure 2.1: a) Top view of a regular triangulation of a height field considering neither 
view position or terrain structure. b) Top view of a triangulated irregular network 
considering both view position and terrain structure. 

Common methods divide the terrain into square areas known as tiles, which are stored at a number 
of different levels of detail. Nearby tiles are visualised at higher level of detail than distant ones. An 
example is illustrated in Figure 2.2 (a). 

This does however introduce problems at the boundary of the tiles. Not only are the transitions to 
other levels of detail visible for the observer; they also introduce cracks and shading discontinuities 
[6, 31]. This can be avoided by ensuring that the projection to the x-y plane of an edge of one triangle 
contains no vertices of the projection of other triangles. A common method is to sew the tiles as in 
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Figure 2.2 (b). This solution also reduces the visible differences between different levels of detail. 
However, the algorithm does not consider the structure of the terrain within each tile. A region within a 
tile may need more geometry than the rest of the tile. A tile-based algorithm cannot accomplish this. 

(a) (b)
 

Figure 2.2: a) Subdivision of terrain into tiles. b) The same subdivision, but this time 
tiles are sewed at the boundary. 

Heckbert and Garland [16] have categorised polygonal-surface approximation algorithms based on a 
regular grid of height samples as follows: 

• Regular grid methods use a subgrid of equally and periodically spaced height samples from the 
original grid. 

• Hierarchical subdivision methods are based on quadtrees, kd-trees, and other hierarchical 
triangulations. They all use a divide-and-conquer strategy that divides the terrain into smaller 
regions in a recursive manner to build a tree structure of the regions. 

• Feature methods create a triangulation based on a subset of the vertices that represents the 
important features of the terrain. 

• Refinement methods are based on a coarse approximation, which is refined and re-triangulated 
during multiple passes. 

• Decimation methods are based on a triangulation of all vertices, which is simplified and re-
triangulated during multiple passes. 

• Optimal methods are included only for their theoretical properties. 

The first two categories generate regular triangulations, while the latter four usually produce 
triangulated irregular networks. Delaunay and data-dependent triangulation are two common examples 
of triangulation methods that produce triangulated irregular networks. Delaunay triangulation 
triangulates a set of two-dimensional points by maximising the minimum angle of all triangles, while 
data-dependent triangulation methods use the heights of the points to achieve more accurate 
triangulations, but they introduce more slivers, i.e. thin triangles. Both Delaunay and data-dependent 
triangulation are discussed in more detail in Appendix A. 

2.1 Regular Grid Methods 
Regular grid subsampling is the simplest surface-simplification algorithm. It samples only the points in 
every kth row and column. No other point is considered in the approximation. The produced subset is 
then triangulated to a regular mesh. Heckbert and Garland points out that these methods are simple and 
fast, but since no consideration is taken to the structure of the terrain or the position of the observer, they 
produce terrain of low quality. 

Regular grid subsampling can be extended to a multiresolution model by hierarchically producing a 
pyramid. These methods are, according to Heckbert and Garland, the most widely used type of 
multiresolution terrain model in both the simulation and visualisation community. More sophisticated 
methods are necessary to produce triangle meshes that meet the high quality standards of today. 
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2.2 Hierarchical Subdivision Methods 
Hierarchical subdivision methods divide the terrain recursively into a tree. They are adaptive, which 
means that they stop the subdivision according to a set of parameters, such as view-frustum culling and 
geometric error. In each step of the subdivision process, the region associated with a node is checked 
against the view frustum. If the whole region is outside, the recursion stops at that branch. Otherwise, it 
measures the distance from the observer and determines whether the level of detail is high enough. If 
more details are necessary, the process continues recursively. 

As the regular grid methods, hierarchical subdivision methods are simple and fast, but they also 
facilitate multiresolution-modelling [16]. 

Several hierarchical subdivision methods exist. Miller [26] bases his algorithm on a quadtree, in 
which each level is computed by an approximate least-squares fit to the level below. Both a view-
independent component and a more accurate view-dependent screen-space error metric are minimised. A 
specified triangle count is guaranteed, but frame-to-frame coherence is not exploited and T-vertices are 
allowed. 

Lindstrom et al. [24] build pairs of triangles into a hierarchical structure. Each triangle is associated 
with another triangle to form pairs of triangles, which are simplified to single triangles by merging the 
individual triangles. This is defined recursively, but sets a major constraint on the height data. The grid 
must consist of x2 vertices, where x = 2n + 1 for some nonnegative integer n. A geometric screen-space 
error metric determines the order of which the triangles are to be merged, but there is no guarantee of 
error bounds. There is no triangle-count parameter that maintains strict frame rates, nor is vertex 
morphing included [6, 24]. 

Duchaineau et al. [6] continue the research of Lindstrom et al. by a method called real-time 
optimally adapting meshes. They use the same space of continuous triangle-bintree meshes, but 
incorporate two priority queues to drive the triangle split and merge process. They do not split the height 
data into regular blocks to reduce the problem of cracks between block boundaries as Lindstrom et al. 
do. Instead, a sequence of forced splits creates a triangle mesh of continuous level of detail. The same 
geometric screen-space error metric is used, but a guarantee of error bounds is included. In addition, 
strict frame rates are maintained by setting a maximal number of generated triangles. Vertex morphing is 
included in the split and merge process. This method is further discussed in Section 4. 

2.3 Feature Methods 
Some height samples describe the terrain better than others do. Feature methods exploit this fact by 
determining the n most important vertices, which are known as features or critical points. A triangle 
mesh is determined from these vertices, usually by some Delaunay or data-dependent triangulation 
method. Some methods find important edges known as break lines and incorporate them into the 
triangulation [16]. A common algorithm is constrained Delaunay triangulation. For details, see 
Appendix A. 

Heckbert and Garland conclude that these methods are inferior in comparison to the other methods. 

2.4 Refinement Methods 
Refinement methods assume that the height samples have already been approximated. During multiple 
passes, the approximation is refined by inserting one or more vertices. The triangle mesh is re-
triangulated in each such pass. Simple rectangular grids usually are initially approximated by two large 
triangles, while more complex height data need more sophisticated approximation algorithms. The 
sequence of vertices to be inserted is usually determined by a measure that computes the distance 
between a vertex and the current triangulation, e.g. the vertical distance. A view-dependent extension 
computes the projection of the same distance onto the view plane [16]. 
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2.5 Decimation Methods 
A decimation method is the opposite of a refinement method. The decimation approach assumes that an 
initial triangulation of all input data already exists, and iteratively simplifies the triangulation by 
removing vertices, edges, or triangles [16]. 

Xia and Varshney [30] have presented a method for performing view-dependent simplification of 
general triangulated irregular networks. A merge tree is constructed using edge-collapse operations that 
do not affect neighbour triangles. The simplifications are dependent on viewing direction, lighting, 
visibility, and include backface-detail reduction based on Gauss-map normal bounds. The algorithm 
consists of both a preprocessing component and a runtime component, which exploit both screen-space 
error metrics and frame-to-frame coherence. 

Hoppe [17, 18, 19, 20, 21] has based his research on Hoppe et al. [22], who create a decimated 
triangulated irregular network from three operations, edge collapse, vertex split, and edge swap. Hoppe 
discovered that the edge collapse was itself enough for simplification, which led to a simplification 
representation called progressive meshes. Progressive meshes store a fine mesh together with a sequence 
of edge collapses. As Xia and Varshney, Hoppe reduces backface detail based on nested Gauss-map 
normal bounds. Some consideration is given to frame-to-frame coherence, but execution times are still 
proportional to the full output mesh size. Vertex morphing, called geomorphing by Hoppe, is included to 
reduce popping artefacts. Progressive meshes are further discussed in Section 3. 

2.6 Optimal Methods 
In addition to the methods described above, it exists a few methods that do not fit into any of the 
previous categories. Those are optimal methods, which are included only for their theoretical properties 
rather than practical applicability. The problem of finding an L∞-optimal polygonal approximation of a 
height field is NP-hard, which implicates that any algorithm that finds such an approximation has an 
exponential time complexity [16]. 
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3 PROGRESSIVE MESHES 
Progressive meshes were developed by Hoppe [19] based on mesh optimisation [22], in which the space 
of triangle meshes is traversed and simplified by applying three operations, edge collapse, edge split, and 
edge swap. Hoppe discovered that only one of these operations, the edge collapse, is sufficient for 
simplifying meshes. 

Hoppe later extended the algorithm to include view-dependent simplification of triangle meshes, 
which enabled progressive meshes to be included in real-time applications [20, 21]. A progressive mesh 
is defined as a sequence of triangle meshes of various levels of detail that are computed based on terrain 
structure and observer position. The underlying set of vertices is not required to be a regular grid, but 
this will be assumed when progressive meshes are compared to real-time optimally adapting meshes in 
Section 4.7. 

3.1 Definitions 
A triangle mesh M is denoted by a tuple (V, F), where V ⊆ R3 is a finite set of vertices, and F ⊂ V 3 is a 
set of ordered triples (vi, vj, vk) that specifies the vertices of the triangles ordered counter-clockwise. 
Hoppe defines a triangle mesh M as a tuple (K, V), where K is a simplicial complex that represents the 
connectivity of the vertices, edges, and faces, and V = {v1, v2, ..., vn} ⊆ R3 is a finite set of vertices. A 
simplicial complex K consists of a set of vertices {v1, v2, ..., vn} and a set of non-empty subsets of the 
vertices, which is called the simplices of K. The 0-simplices {i} ∈ K are called vertices, the 1-simplices 
{ i, j} ∈ K are called edges, and the 2-simplices {i, j, k} ∈ K are called triangle faces. For each simplex s 
∈ K, |s| denotes the convex hull of its vertices in R3 and |K| = Us∈K|s|. φ:Rn→ R3 is defined as the linear 
function that maps the i th standard basis vector ei ∈ Rn to vi ∈ R3. The image φ(|K|) is known as the 
geometric realisation of M. 

The neighbourhood of a vertex v is defined as the set of triangle faces adjacent to v. It is often called 
the star of the vertex. The neighbourhood of an edge e = {vi, vj} refers to the union of the 
neighbourhoods of the vertices vi and vj. It is often called the star of the edge. An edge that has only one 
adjacent triangle is called a boundary edge. A boundary vertex is a vertex adjacent to at least one 
boundary edge. An interior vertex is a non-boundary vertex. Finally, the valence of a vertex is defined as 
the number of edges adjacent to that vertex. 

Let M 0 be a coarse triangle mesh simplified from a triangle mesh M. A progressive mesh, 
abbreviated PM, of M is a sequence of n vertex splits that refines M 0 into M. A vertex split is an 
elementary mesh operation that adds a vertex and two triangles to the mesh. The number of vertices in 
M 0 is denoted m0. The vertices of mesh M i is denoted V i = {v1, v2, ..., vm0+i}. The position of a vertex vj 
in M i is labelled vj

i [19, 21, 23]. 

3.2 Progressive Mesh Representation 
A PM can be illustrated as 

 )(...
110

10 MMMM n
vsplitvsplitvsplit n

=→→→
−

. (3.1) 

An operation vspliti−1 defines the vertex split that generates the i th mesh in the PM. A PM is 
represented by a tuple (M0, {vsplit0, vsplit1, ..., vsplitn−1}), of which each vertex-split operation can be 
parameterised as vsplit(vu, vl, vr, vs, vt, fl, fr), indicating that a vertex vu is replaced by two new vertices vs 
and vt. Two triangle faces fl = (vl, vs, vt) and fr = (vs, vr, vt) are also inserted into the triangle mesh in the 
operation. This is illustrated in Figure 3.1. If vu would be a boundary vertex, then either vl or vr are set to 
invalid and only one face will be introduced into the mesh. 
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Hoppe [21] parameterises the vertex-split operation as vsplit(vs, vl, vr, vt, fl, fr), which creates one new 
vertex vt, and repositions vs. However, this parameterisation is inadequate, since the new position of vs is 
not included. 

A PM of M can also be represented as a sequence of n records that applies the inverse operation to 
vertex split, an edge collapse, as illustrated in Figure 3.1. The split of vertex vu introduces new vertices 
vs and vt, and two new triangle faces fl = (vl, vs, vt) and fr = (vs, vr, vt) into the mesh. The edge collapse is 
the inverse operation, i.e. the vertices vs and vt are replaced by a single vertex vu. The triangle faces fl and 
fr are removed in the process. 

Vertex spl i t

Edge co l lapse

vl
v

rvu v l

vs

v r

v
t

f
r

f
l

 

Figure 3.1: The vertex-split and edge-collapse operations. 

This sequence becomes 

 01
021

...)( MMMM
ecolecol

n
ecol

n
nn

→→→=
−− − . (3.2) 

Each edge collapse operation is parameterised as ecol(vu, vl, vr, vs, vt, fl, fr), which indicates that the 
vertices vs and vt, adjacent to vl and vr are collapsed to a vertex vu that is also adjacent to vl and vr. This 
removes the triangle faces fl = (vl, vs, vt) and fr = (vs, vr, vt) from the mesh. 

Thus, a PM defines a sequence of meshes M0, M1, ..., Mn from which n view-independent level-of-
detail approximations can be retrieved. The order of edge collapse operations determines the quality of 
the approximating meshes Mi, i < n. 

3.3 Progressive Mesh Construction 
Several different methods determine the order of edge collapses. They have all to compromise between 
simplicity, speed, and accuracy. To maximise the simplicity and speed, the order of edge collapses could 
be chosen at random, but this guarantees no accuracy. Since the PM construction is an offline process, 
the speed is of low priority. Hoppe [19], Xia and Varshney [30], and Garland and Heckbert [13] have 
presented algorithms that produce progressive meshes of high quality. 

3.3.1 Energy Function 
To find the right order of edge collapses, Hoppe minimises an energy function E:M→R, defined by 

 )()()()( MEMEMEME springrepdist ++= , (3.3) 

where Edist, Erep, Espring:M→R and M is the set of all meshes. The distance energy term Edist equals the 
sum of squared distances from the vertices {v1, v2, ..., vn}: 

 ∑=
i

vidist vdME )(,()( 2 Kφ . (3.4) 

The representation energy Erep term is defined by 
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 mcME reprep =)( , (3.5) 

which is a penalty function that adds a term proportional to the number of vertices m in M. Finally, the 
spring energy term Espring is defined by 

 
2

},{

)( ∑
∈

−=
Kkj

kjspring vvME κ . (3.6) 

The spring energy term can be compared to placing a spring of rest length zero and tension κ on 
each edge. These three terms together define a function that measures the closeness to fit, penalises 
meshes with a large number of vertices, and regularises the mesh to guide the optimisation to a desirable 
local minimum. 

The function E has to be minimised in order to find the right order of edge collapses. This is done by 
minimising E by two nested loops. The outer loop optimises over K, the connectivity of the mesh, while 
the inner loop minimises the set {Edist(V) + Espring(V) | V ∈ V}. 

3.3.2 Merge Tree 
Xia and Varshney [30] base their PM sequence in order of edge lengths in a merge tree. At the first level 
of the tree, as many edges as possible are collapsed as long as the neighbourhoods of the edges do not 
intersect. At the second level, the remaining edges are collapsed according to the same rule. Within each 
level, the edge collapses are ordered by increasing edge lengths. The process is repeated until no more 
edges can be collapsed. 

3.3.3 Quadric Error Metric 
Garland and Heckbert [13] assign a cost to each potential edge collapse using quadric error metrics. A 
priority queue that is keyed on cost is built with the minimum cost edge at the top. If an edge is 
collapsed, a new vertex is introduced. The cost for all edges adjacent to this vertex is recomputed and the 
priority queue is updated. They associate a symmetric 4×4 matrix Q with each vertex v, which is 
represented by a vector [vx vy vz 1]T. The error at vertex v is computed by ε = vTQv and represents the 
squared distances from the vertex to a set of planes in its neighbourhood. 

3.4 Selective Refinement and Coarsening 
A selectively refined mesh Ms is defined as the triangle mesh obtained by applying a subsequence S ⊆ 
{0, 1, ..., n − 1} of the PM vertex-split sequence. This may however introduce inconsistent meshes. In 
Figure 3.2, two edge collapse operations are performed; one that collapses edge {vi, vj} and one that 
collapses edge {vs, vt}, with parameterisations ecol(vk, vl, vm, vi, vj, fl, fm) and ecol(vu, vj, vr, vs, vt, fj, fr), 
respectively. 

vi

vs

v rv j

v t

v l

vm

vr

vk vu

v l

vm

ecol(vk
, vl

, vm
, vi

, vj, f l, fm
)

ecol(vu, vj, vr , vs, vt, f j, f r)
f l

f m

f j f r

 

Figure 3.2: Collapsing edges {vi,vj} and  {vs,vt}. 
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If edge {vi, vj} is collapsed before edge {vs, vt}, vertex vj will be replaced by another vertex vk before 
edge {vs, vt} is collapsed, which results in an inconsistent parameterisation, since vj is included in the 
parameterisation of the second collapse. However, if the order of collapses is reversed, both edge 
collapses will become consistent. Thus, the order of edge collapses is important to maintain consistent 
meshes. 

Hoppe [21] introduced new definitions of vertex split and edge collapse that together with a set of 
legality preconditions are sufficient for consistency. The operations are still the same; only their 
parameterisations differ. Vertex split is parameterised as vsplit(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3), and edge 
collapse is parameterised similarly, ecol(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3). As shown in Figure 3.3, the vertex 
split replaces a vertex vu by two other vertices vs and vt. Two new triangle faces are introduced in the 
operation, fl = (vl, vs, vt) and fr = (vs, vr, vt), between two pairs of neighbouring faces (fn0, fn1) and (fn2, fn3). 
The edge collapse applies the inverse operation, i.e. two vertices vs and vt are merged into a single vertex 
vu. The two faces fl and fr vanish in the process. Meshes with boundary are supported by letting the face 
neighbours fn0, fn1, fn2, and fn3 representing special nil values. A vertex split with fn2 = fn3 = nil creates 
only a single face fl. 
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Figure 3.3: The new vertex-split and edge-collapse parameterisations. 

3.4.1 Legality of Edge Collapse 
There are two necessary preconditions for the new definitions of vsplit and ecol to be legal. A 
vsplit(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3) operation is legal if vu is active and all faces fn0, fn1, fn2, and fn3 are 
active, i.e. vu, fn0, fn1, fn2, fn3 are all present in the triangle mesh. An ecol(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3) 
operation is legal if vs and vt are active vertices and the faces adjacent to fl and fr are fn0, fn1, fn2, and fn3. 

An illegal edge collapse can change the topology of the mesh. If there is a hole in the mesh, as in 
Figure 3.4 (a), a collapse of the edge {vs,vt} removes the hole. Collapsing the edge {vs,vt} in Figure 3.4 
(b) creates a mesh that is not 2-manifold and the collapse of the edge {vs,vt} in Figure 3.4 (c) can invert 
faces if the resulting vertex is positioned to the left of va. 

v
s

v t

v
s

v t v s v tv
a

(a) (b) (c)  

Figure 3.4: a) Collapsing {vs,vt} removes the hole. b) Collapsing {vs,vt} results in a 
mesh that is not 2-manifold. c) Collapsing {vs,vt} to a vertex that is placed to the left of 
va inverts the faces. 
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This has resulted in another definition of edge legality. An edge collapse ecol(vu,vs,vt, fl, fr, fn0, fn1, fn2, fn3) 
is legal if the following three conditions are fulfilled [23]: 

1. If the resulting vertex vu is an interior vertex, its valence must be greater than or equal to three. 
Otherwise, its valence must be greater than or equal to one. 

2. If a vertex vl is adjacent to both vs and vt, either the triangle (vl, vt, vs) ∈ F or (vl, vs, vt) ∈ F. 
3. If vs and vt are both boundary vertices, the edge {vs, vt} must be boundary. 

The problem of mesh inversion can be prevented by three methods. First, based on a method by 
Lilleskog [23], the dot product of the normals of the triangle before and after the edge collapse can be 
computed. If the result is negative, the triangle has been flipped, and the edge collapse should be 
disallowed. Second, this problem can be avoided by constructing a projection plane, on which the 
neighbourhood of the edge is injectively mapped. The resulting vertex is placed so that inversion is 
impossible. The third method is the computationally cheapest one, although it restricts the position of the 
resulting vertex vu. Place vu only on a location previously occupied by the collapsed edge. 

The introduction of slivers in the terrain can produce aliasing artefacts with texture mapping. 
Lilleskog [23] and Guéziec [14] have developed two methods to avoid them: 

1. A vertex of high valence is likely to be adjacent to slivers. These slivers can be avoided by 
setting an upper limit of vertex valences. 

2. Guéziec uses a metric called the compactness c of a triangle with lengths l0, l1 and l2 of the sides 
and area a: 
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The area can be computed by Heron’s formula: 
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Both the valence of a vertex and the compactness of a triangle can be used to restrict edge collapses 
that would introduce slivers. 

3.5 Vertex Morphing 
Hoppe has introduced a method called geomorphing for morphing vertices between two meshes. A 
geomorphed mesh is denoted MG(α), where 0 ≤ α ≤ 1, such that MG(0) looks like Mi and  MG(1) = Mi+ 1 
and MG(α) is the linear interpolation between Mi and Mi+ 1. More formally, a geomorph MG(α) is 
defined by 
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where Ki+ 1 is the simplicial complex for Mi+ 1 and Vj
G(α) is defined by 
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Thus, MG(α) has the same connectivity as Mi+ 1, but the positions of the vertices are interpolated from 
those in Mi. 

These ideas can be extended to construct geomorphs between any two meshes. There is a natural 
correspondence between any two meshes Mc and Mf, with 0 ≤ c < f ≤ n. Every vertex in Mf is related to a 
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unique vertex of Mc by a surjective map Ac, which is obtained by composing the sequence of edge 
collapse operations. More formally, a vertex vj in Mf is related to the vertex vAC(j) in Mc, where 
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Thus, a geomorph can be defined by 
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Thus, smooth transition between two consecutive frames is possible by progressive meshes 
regardless of the difference in triangulation. 

3.6 View-Dependent Refinement of Progressive Meshes 
Progressive meshes were originally optimised for view-independent simplification of terrain only, but 
the algorithm was improved in [21], where Hoppe developed view-dependent progressive meshes 
(VDPM) that incrementally refines the progressive mesh. 

3.6.1 Overview 
A progressive-mesh sequence can be represented by a forest of binary trees. The roots of the binary trees 
are the vertices of the base mesh M0, and children are created as vertices are split. The original mesh M 
is constructed from all leaf nodes. 
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Figure 3.5: A forest of binary trees that represents a VDPM. 

A selectively refined mesh Ms is achieved by keeping track of a vertex front in the tree. Vertex-split 
and edge-collapse operations move parts of the vertex front up or down in the hierarchy, as illustrated in 
Figure 3.6. 
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Figure 3.6: A vertex front of a selectively refined mesh Ms. 
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3.6.2 Selective Refinement Algorithm 
There is an algorithm that incrementally adapts a mesh for selective refinement. The vertex front is 
stored as a list of active vertices together with a list of all active triangles. The vertex list is traversed 
before each frame is rendered and a decision is made for each vertex whether to leave it as it is, split it, 
or collapse it. 

A query function, qrefine, determines whether a vertex v should be split based on the current view 
parameters. It returns false either if v is outside the view frustum, if it is oriented away from the 
observer, or if a screen-space geometric error is below a given tolerance. Otherwise, it returns true. 
Hoppe [21] and Lilleskog [23] discuss these refinement criteria in detail. 
 
Algorithm Adaptive Refinement 
Input:  • A set of active vertices V in a VDPM. 
Output:  • A refined triangulation. 
1. for each v ∈ V do 
2.  if  v has children and qrefine(v) then 
3.   force vsplit(v) 
4.  else 
5.   if  v has a parent and edge collapse is legal for v.parent and not qrefine(v.parent) then 
6.    ecol(v.parent) 
7.   end if 
8.  end if 
9. end for 

Algorithm 3.1:  Adaptive refinement. 

Algorithm 3.1 checks each vertex and splits it if necessary. If qrefine(v) evaluates to true, the vertex 
v should be split. If the preconditions for splitting v are not fulfilled, a sequence of other vertex splits is 
performed in order for vsplit(v) to become legal. This is performed by Algorithm 3.2. 

If either v has no children or qrefine(v) returns false, v is checked for a parent. If v has a parent and 
the edge collapse of v and its sibling is legal, the edge collapse is performed if qrefine returns false for 
the parent of v. 

Algorithm 3.2 keeps all vertices that have to be split in a stack. The parent of each vertex v in the 
stack is pushed onto the stack if v is not active. If v is active and vsplit(v) is legal, then v is split. This is 
repeated until the original vertex is split. Hoppe [21] describes both algorithms together with necessary 
data structures in more detail. Some implementation details are also included. 
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Algorithm Force vsplit 
Input:  • A vertex v in a VDPM. 
Output:  • A refined VDPM, where v is split. Any other vertices that have to be split in      
   order to the split of v is to be legal are also split. 
1. stack := v 
2. while v := stack.pop() do 
3.  if  v has children and v.fl ∈ F then 
4.   stack.pop() 
5.  else 
6.   if  v ∉ V then 
7.    stack.push(v.parent) 
8.   else 
9.    if  vsplit(v) is legal then 
10.     stack.pop() 
11.     vsplit(v) 
12.    else 
13.     for  i := 0 to 3 do 
14.      if  v.fni ∉ F then 
15.       stack.push(v.fni.parent) 
16.      end if 
17.     end for 
18.    end if 
19.   end if 
20.  end if 
21. end while 

Algorithm 3.2:  Force vsplit. 
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4 REAL-TIME OPTIMALLY ADAPTING MESHES 
Real-time optimally adapting meshes, ROAM, were presented by Duchaineau et al. [6] as a further 
development of previous work by Lindstrom et al. [24]. Duchaineau et al. chose the same space of 
binary triangle-tree meshes, but used split and merge operations instead of triangle fusions. 

4.1 Definitions 
This section uses a similar notation as Duchaineau et al. A triangle T = (v1, v2, v3) is defined by the 
positions of its three vertices v1, v2, and v3 ordered counter-clockwise. A triangle bintree is a binary tree, 
whose nodes consist of right-isosceles triangles. An edge E with neighbouring vertices v1 and v2 is 
denoted {v1, v2}. A right-isosceles triangle T will be denoted T = (va, v0, v1), where va is the apex vertex, 
v0 is the left base vertex, and v1 is the right base vertex. If T = (va, v0, v1) is a node in a triangle bintree, 
the children of T are defined by splitting T along an edge from va to the midpoint vertex vc of v0 and v1. 
The left child of T is T0 = (vc, va, v0) and the right child is T1 = (vc, v1, va). Figure 4.1 illustrates a three-
level triangle bintree. 
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T1T1

T2

T2

T5

T4 T7
T6

T3

T7T6T5T4

T3

(a ) (b )
 

Figure 4.1: The first three levels of a triangle bintree. 

4.2 ROAM Representation 
The purpose of a triangle bintree is to easily choose the local level of detail of the triangulation. If the 
terrain is flat or distant, only a few triangles are necessary to approximate a large area, while if the 
terrain is rough or close, more triangles are required. 

The source data is a regular grid of equally spaced height samples. ROAM is limited to only handle 
data of sizes (2n+1)×(2n+1). However, data structures of other sizes can be divided into several small 
quadratic blocks. Each block may be represented by two large triangles, who form the root nodes of their 
respective triangle bintree. The rest of the triangle bintrees are defined by recursively applying the 
splitting process until a triangle of minimal size is constructed. These triangles form the leaves of the 
tree. 

Each interior triangle T in the triangle bintree has three neighbours. TB is defined to be the base 
neighbour that shares its base edge {v0, v1} with T. Similarly, TL is defined to be the left neighbour that 
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shares its right edge {va, v0} with T and TR is defined to be the right neighbour that shares its left edge 
{ v1, va} with T. This is illustrated in Figure 4.2. 

TB

T

TL TR

 

Figure 4.2: The notation for neighbour triangles. 

Left and right neighbours to a triangle T in a bintree triangulation are either from the same bintree 
level l as T or from the next finer level l+ 1. The base neighbour can only be from the same level l or the 
next coarser level l−1. 

If both a triangle T and its base neighbour TB is of the same bintree level, the tuple (T, TB) is said to 
be a diamond. If T is to be split, TB has also to be split in order to avoid cracks and shading 
discontinuities [6, 31]. The split of TB may also cause other neighbours to be split, resulting in a 
recursive sequence of splits. The splits in this sequence are known as forced splits and are illustrated in 
Figure 4.3. 

F o rced  sp lits

TB

TR

TL

T

 

Figure 4.3: The split of T can result in a sequence of forced splits. 

If both a triangle T and its base neighbour TB have been split once, they may be merged. In this case, 
they are said to form a mergeable diamond. However, (T, TB) does only form a mergeable diamond if 
none of the children of T or TB is split. 

These two tree operations, split and merge, are together enough to obtain any other triangulation 
from a given base triangulation. With the use of force splits, no other efforts are required to avoid cracks 
or shading discontinuities. 

4.3 Vertex Morphing 
Vertex morphing provides the possibility of animating the split and merge operations during a set of 
consecutive frames to avoid popping artefacts. w(v) is defined to be the position (vx, vy, vz) of a vertex v. 
For a split operation, the unsplit base-edge midpoint 
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is linearly interpolated to the position 

 )( cc vww =  (4.2) 

of the new vertex vc. Duchaineau et al. linearly interpolate wm to wc with intermediate positions 

 ]1,0[,)1()( ∈∀+−= ttwwttw cma . (4.3) 

However, since the frames are visualised at discrete time steps, this may be reformulated. Morphing a 
vertex through n consecutive frames with start time t0 becomes 
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where d is the time between two consecutive frames. 

4.4 Triangulation Algorithms 
Duchaineau et al. have constructed two algorithms that generate optimised triangulations. The first is 
simple and used in a few rare cases only. It is based on a rough triangulation that is iteratively refined by 
a sequence of forced splits. A priority queue Qs, known as a split queue, contains monotonic priorities 
for all triangles to determine the order of these splits. The priority of a triangle T is determined by the 
error caused by using T instead of the finest triangulation. The error metrics are covered in Section 4.5. 
 
Algorithm Split Queue 
Input:  • A base triangulation T. 
  • An empty priority queue QS. 
  • Nmax ∈ N, indicating the maximal number of triangles. 
  • εmax ∈ R, indicating the maximal error. 
Output:  • An optimal triangulation T. 
1. for  all triangles T ∈ T do 
2.  insert T into QS 
3. end for  
4. while |T| < Nmax or E(T) > εmax do 
5.  identify highest-priority triangle T in Qs 
6.  split(T) 
7.  remove T and other split triangles from Qs 
8.  add any new triangles in T to Qs 
9. end while 

Algorithm 4.1: Split Queue. 

|T| denotes the number of triangles in T and E(T) denotes as the maximal error of all triangles in T. 

It can be shown that Algorithm 4.1 produces optimal triangulations at every step. The first two 
statements in the while loop create the triangulation, while the last two update the split queue. 

Since the viewpoint changes between each frame, so should also the triangulation. The split-queue 
algorithm can be extended to a frame-coherent algorithm that produces an optimal triangulation for a 
frame f based on the triangulation for the previous frame f−1 by applying both split and merge 
operations. 

Assume we are given triangle bintrees Tf for each frame f ∈ N and that every triangle in every 
triangle bintree is given a priority value. The priority of a triangle does not have to equal the priorities of 



20 Chapter 4 Real-Time Optimally Adapting Meshes 
 

the same triangle in the other triangle bintrees. The priorities are computed by a view-dependent screen-
space geometric error, which is covered in Section 4.5. 

A priority split-queue Qs contains a monotonic priority pf(T) for each triangle T in the bintree. A 
second priority queue Qm contains the priorities for all mergeable diamonds in the current triangulation. 
The priority for a mergeable diamond (T, TB) is defined as the maximum priority mp = max{pf(T), pf(TB)} 
of the individual triangles. Smax(T) denotes the maximum split priority and Mmin(T ) is defined as the 
minimum merge priority. 
 
Algorithm Merge Queue 
Input:  • A base triangulation T. 
  • Empty priority queues Qs and Qm. 
  • Nmax ∈ N that indicates the maximal number of triangles. 
  • εmax ∈ R indicates the maximal error. 
Output:  • Optimal triangulations for all frames. 
1. for  all frames f do 
2.  if  f = 0 then 
3.   compute priorities for T's triangles and diamonds and insert them into Qs and Qm, respectively 
4.  else 
5.   let T = Tf−1 
6.   update the priorities for all elements of Qs and Qm 
7.  end if 
8.  while |T| > Nmax or E(T) > εmax or Smax(T) > Mmin(T ) do 
9.   if  |T| > Nmax or E(T) < εmax then 
10.    identify the lowest-priority pair (T, TB) in Qm 
11.    merge(T, TB) 
12.    remove the merged children from Qs 
13.    add the merged parents T and TB to Qs 
14.    remove (T, TB) from Qm 
15.    add all newly mergeable diamonds to Qm 
16.   else 
17.    identify highest-priority T in Qs 
18.    split(T) 
19.    remove T and other split triangles from Qs 
20.    add any new triangles in T to Qs 
21.    remove any diamonds whose children were split from Qm 
22.    add all newly mergeable diamonds to Qm 
23.   end if 
24.  end while 
25.  set Tf = T 
26. end for 

Algorithm 4.2:  Merge queue 

Algorithm 4.2 produces the same optimal mesh as Algorithm 4.1 by computing the minimal number 
of split and merge operations necessary to achieve an optimal triangulation. Thus, the algorithm exploits 
coherence between consecutive frames. It has a time complexity proportional to the minimal number of 
split and merge operations. However, if all triangles are disjoint in two consecutive frames, the worst-
case time complexity is proportionate to the sum of the number of triangles in both triangulations. These 
cases occur only when there is a large number of triangles between the minimum merge priority and the 
maximum split priority. Fortunately, these cases are easily discovered and the triangulation is sped up by 
reinitialising T, Qs, and Qm and fall back to algorithm 4.1. 
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4.5 Queue Priorities 
The priority for each triangle in the triangle bintree is determined by an error metric. The error metric 
used by Duchaineau et al. is a measure of the geometric screen distortion. 

Given a triangle T, a wedgie is defined as the volume consisting of points {(x, y, z) ∈ R3 | (x, y) ∈ 
P(T) and |z − zT(x, y) | ≤ eT}. P:T→R2 is a function such that P(T) returns the orthogonal projection of T 
to the xy-plane, zT:P(T) → R is a function that returns the z-value of a triangle T at position (x, y), and eT 
≥ 0 is known as the wedgie thickness. A line segment consisting of points {(x, y, t) ∈ R3 | t − zT(x, y)| ≤ 
eT} is called the thickness segment for T. A wedgie is illustrated in Figure 4.4 (b). 

h

(a) (b)
 

Figure 4.4: a) The height h indicates the object-space error of using a large triangle 
instead of two smaller ones. b) A wedgie is defined as the grey volume of height h. 

The wedgie bounds are built bottom-up, starting with eT = 0 for all the leaves of the triangle bintree. 
The tightest wedgie bound for a nonleaf triangle T is 
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Thus, this formula enables us to assign a priority value for each triangle. 

This error metric is view independent, but it can be extended to regard the view position as well. 
This requires the computation of the geometric screen-space distortion. Let s(v) ∈ R2 be the correct 
screen-space position for a domain point v, and sT(v) ∈ R2 be the approximate position from a 
triangulation T. Further, let the point-wise geometric distortion at v be defined by dist(v) = 
||s(v) − sT(v)||2. 

The minimal upper bound of the distortion is sup{ dist(v) | v ∈ V}, where V is the set of domain 
points whose world-space positions w(v) are within the view frustum. This minimal upper bound can 
occur between two vertices due to the perspective transformation. This is solved by computing an upper 
bound that is not necessarily minimal. 

Let (p, q, r) be the camera-space coordinates of a point w(v). Without loss of generality, assume that 
the perspective projection is of the form s = (p/r, q/r). The geometric screen-space distortion at v is 
bounded by projecting the thickness segment at v onto the view plane. Let (a, b, c) be the camera-space 
vector corresponding to world-space thickness vector (0, 0,eT). The screen-space distortion at v is 
bounded by 
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The minimum of r2 − c2 and the maximum of (ar − cp)2 + (br − cq)2 occur at the vertices, although 
not generally at the same vertex. An upper bound on distmax(v) can thus be obtained by substituting these 
minimum and maximum values into Equation 4.7. 

4.6 Performance Enhancements 
Duchaineau et al. have found four optimisation algorithms that increase the frame rate. The first three 
together decrease the respective computation times for their subtasks by more than a factor of ten, while 
the fourth ensures strict frame rates. 

4.6.1 View-Frustum Culling 
The view-frustum culling is based on flags for every triangle. The view frustum can be defined by the 
intersection of six halfspaces. Four create a pyramid containing the field of view, while the other two are 
called the near and far clipping planes. 

Every triangle is given an IN flag for each of the six halfspaces, and three flags named OUT, ALL-IN 
or DONT-KNOW. IN is set when the entire wedgie is inside its corresponding halfspace, OUT is set 
when the entire wedgie is outside at least one halfspace, ALL-IN is set when all six IN flags are set, and 
DONT-KNOW is set if neither OUT or ALL-IN is set. 

The bintree is traversed recursively to update these flags. Duchaineau et al. describes the purpose of 
the flags as follows: “If a triangle T was labelled OUT or ALL-IN for the previous frame and these labels 
are correct for the current frame, the subtree for T does not need to be updated and recursion terminates. 
Otherwise, T inherits its IN flags from its parent and rechecks its wedgie against the halfspaces not 
marked IN, setting new IN flags if appropriate. If the wedgie is entirely outside any of these halfspaces, 
T and all its children are marked OUT. If all IN flags are set, T and all its children are marked ALL-IN. 
Otherwise T is marked DONT-KNOW and recursion continues to its children.” 

4.6.2 Incremental triangle stripping 
Rendering performance can be improved by organising triangles into strips. A triangle strip is a 
sequence of three or more vertices, in which every consecutive set of three vertices defines a triangle 
[11]. Duchaineau et al. have included incremental triangle stripping in their implementation, but the 
algorithms are not mentioned. 

However, they describe the algorithm as a simple, sub-optimal, incremental approach that only 
considers non-generalised strips. The average strip length has been computed to around four to five 
triangles. A triangle strip from which a triangle is deleted is either shortened on the end, split in two, or 
deleted. If a new triangle is to be inserted, it is attached to neighbouring triangle-strip ends, if possible. 

4.6.3 Priority-computation Deferral 
As the view position changes between two consecutive frames, the split- and merge-queue priorities of 
all triangles change. Recalculating all priorities is a very time-consuming task. However, it is only 
necessary to recalculate the priorities when they potentially affect a split or merge operation. 

This scheme requires a velocity bound on the observer. A velocity bound determines a time-
dependent bound for screen-distortion priorities. The crossover priority, i.e. the maximum split-queue 
priority when the split and merge process has finished, changes very slowly from frame to frame. Test 
results have shown that these changes are around 1% of the maximum queue priority. 

Triangle-priority recomputations are deferred until the priority bound overlaps the crossover priority. 
A deferral list is kept for future frames, but only the priorities of the triangles on the current frame have 
to be recomputed. 

4.6.4 Progressive Optimisation 
The triangulation optimisation has to be stopped when the allotted frame time is about to expire in order 
to maintain a strict frame rate. Three algorithms supports progressive optimisation: optimisation 
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processing, triangle stripping and priority recomputations. The only phase of ROAM not suitable for 
progressive optimisation is view-frustum culling. 

4.7 Comparison to VDPM 
ROAM has been compared to VDPM in order to find the best algorithm for the implementation. A 
thorough comparison would require the implementation of both algorithms and compare them 
empirically. However, time constraints preclude that option. Therefore, the algorithms have only been 
compared theoretically. Both algorithms include a preprocessing component and a runtime component. 
The comparison has only considered the speed of the runtime components, since there are no time 
constraints on the preprocessing components and memory resources are essentially unlimited at Ericsson 
Saab Avionics AB. 

Both ROAM and VDPM support vertex morphing. A VDPM elementary mesh operation, i.e. vertex 
split or edge collapse, involves two vertices. Therefore, VDPM is required to morph two vertices in such 
an operation. On the other hand, a ROAM elementary mesh operation, i.e. a split or merge operation, 
only involves a single vertex. Thus, vertex morphing is less computationally expensive for ROAM. 

A ROAM elementary mesh operation is easily checked for validity. A split operation for a triangle t 
is valid if t is neither a leaf or previously split. A merge operation for a triangle t is valid if it has 
previously been split. The positions of the resulting vertices from these operations are given from the 
height field and require no computations. 

A validity test for a VDPM elementary mesh operation requires more computations. A vertex split 
that is parameterised vsplit(vu, vs, vt, fl, fr, fn0, fn1, fn2, fn3) is legal if vu, fn0, fn1, fn2, and fn3 are active. Thus, 
one vertex and four triangles have to be checked for presence in the mesh. In addition, the position from 
the resulting vertex from an edge collapse operation is not given and has to be computed. Additional 
computations must be made to avoid inverting the triangle when an optimal position is found. Thus, 
while VDPM optimises the positions of its vertices, ROAM is faster. 

ROAM automatically avoids slivers since all triangles are right isosceles. The minimum angle in any 
triangle is π/4 radians. VDPM have to make additional tests to avoid slivers. If Guéziec’s method is 
used, the compactness of the triangle has to be computed. In addition, finding the compactness requires 
the computation of the lengths of the three triangle edges and the area of the triangle. Morphing two 
vertices during a VDPM elementary mesh operation introduces slivers temporarily in the mesh. This 
cannot be avoided and such an operation may result in aliasing artefacts. 

Although both ROAM and VDPM exploits frame coherence, ROAM execution time is proportional 
to the number of triangle changes per frame, while VDPM execution time is proportional to the full 
output mesh size. 

Both ROAM and VDPM generate triangle strips. Duchaineau et al. claim to achieve 4-5 triangles 
per strip, while Hoppe has computed an average of 4.2 triangles per strip. The execution times for 
generating the strips are however not comparable. 

Duchaineau et al. conclude that “progressive-mesh preprocessing is organised as a global 
optimisation process, and thus is too slow to support dynamic terrain”, although the space of triangle 
meshes that can be produced by ROAM is only a subset of the space of progressive meshes. ROAM 
produce optimal triangulation within the restricted space of triangulations, but it does not produce 
optimal triangulation in the space of all possible triangulations. Lilleskog [23] has shown that 
progressive meshes produce triangle meshes with 50−75% of the triangles produced by Lindstrom et al. 
[24]. 

In summary, although ROAM requires more triangles for the same maximal error than VDPM, 
ROAM is so much faster to generate the triangles that it is preferred for real-time applications. 
Therefore, the implementation of the prototype is based on ROAM. 
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5 ROAM ALGORITHM AND IMPLEMENTATION ASPECTS 
A prototype based on ROAM has been implemented together with a visualisation engine. Since the split 
and merge algorithms have not been given explicitly by Duchaineau et al., they were designed before the 
implementation phase. The major difference between the prototype and the original ROAM algorithm is 
a new merge operation and a main algorithm that does not need to use any split or merge priority queues. 
Triangle stripping, progressive optimisation, and priority-computation deferral have not been included 
because of time constraints. 

This chapter describes the algorithms, data structures, and implementation issues for the prototype. 
In total, four algorithms are presented below. The split algorithm, which splits a triangle into two 
children and performs all necessary force splits, is based on an algorithm by McNally [25]. The merge 
algorithm can merge the children of any triangle, even if they also have been split. Finally, a main 
algorithm that controls the split and merge process is presented. 

The data structures for the triangle bintree and its nodes are covered at the end together with some 
implementation issues. 

5.1 Split Algorithm 
This algorithm is based on an algorithm by McNally [25], but with two minor changes. The purpose is to 
split a triangle into two children and perform all necessary force splits. 

McNally has not implemented the merge operation and consequently does not exploit frame-to-
frame coherency either. Therefore, an extra statement that controls neighbour pointers was added in 
order to adapt his algorithm into one that can be used together with the merge operation. In addition, 
McNally’s algorithm checks if the left neighbour of a triangle’s left neighbour is the triangle itself. This 
can never happen, and the operation should be removed. 

The algorithm is divided into two functions, Split and xSplit. Splitting a triangle T is done by the 
Split function, which performs any necessary force splits first and then calls xSplit twice, once with T 
and once with the base neighbour of T. 
 
Algorithm Triangle Split 
Input:  • An unsplit nonleaf triangle T in a triangle bintree. 
Output:  • An updated triangle bintree, where T is split and all necessary force splits are performed. 
1. if  T.BaseNeighbour is valid then 
2.  if  T.BaseNeighbour.BaseNeighbour is valid then 
3.   Split(T.BaseNeighbour) 
4.  end if 
5.  xSplit(T) 
6.  xSplit(T.BaseNeighbour) 
7.  T.LeftChild.RightNeighbour := T.BaseNeighbour.RightChild 
8.  T.RightChild.LeftNeighbour := T.BaseNeighbour.LeftChild 
9.  T.BaseNeighbour.LeftChild.RightNeighbour := T.RightChild 
10.  T.BaseNeighbour.RightChild.LeftNeighbour :=T.LeftChild 
11. else 
12.  xSplit(T) 
13.  set T.LeftChild.RightNeighbour to invalid 
14.  set T.RightChild.LeftNeighbour to invalid 
15. end if  

Algorithm 5.1:  Triangle Split. 

The xSplit function performs the actual splitting process. 
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Algorithm xSplit 
Input:  • An unsplit nonleaf triangle T in a triangle bintree. 
Output:  • An updated triangle bintree, where T is split and all necessary force splits are performed. 
1. T.LeftChild.LeftNeighbour := T.RightChild 
2. T.RightChild.RightNeighbour := T.LeftChild 
3. T.LeftChild.BaseNeighbour := T.LeftNeighbour 
4. T.RightChild.BaseNeighbour := T.RightNeighbour 
5. if  T.LeftNeighbour is valid then 
6.  if  T.LeftNeighbour.BaseNeighbour = T then 
7.   T.LeftNeighbour.BaseNeighbour := T.LeftChild 
8.   T.LeftNeighbour.Parent.RightNeighbour := T.LeftChild 
9.  else 
10.   T.LeftNeighbour.RightNeighbour := T.LeftChild 
11.  end if 
12. end if 
13. if  T.RightNeighbour is valid then 
14.  if  T.RightNeighbour.BaseNeighbour = T then 
15.   T.RightNeighbour.BaseNeighbour := T.RightChild 
16.   T.RightNeighbour.Parent.LeftNeighbour := T.RightChild 
17.  else 
18.   T.RightNeighbour.LeftNeighbour := T.RightChild 
19.  end if 
20. end if 
21. set T.LeftChild.LeftChild to invalid 
22. set T.LeftChild.RightChild to invalid 
23. set T.RightChild.LeftChild to invalid 
24. set T.RightChild.RightChild to invalid 

Algorithm 5.2:  xSplit. 

5.2 Merge Algorithm 
The force-split operation was introduced by Duchaineau et al. [6] as a part of the split operation. Recall 
from Section 4.2 that, if two unsplit triangles T and TB are both from the same level in a triangle bintree, 
the pair (T, TB) is said to be a diamond. To split a triangle T, it has to form a diamond with its base 
neighbour TB. If (T, TB) does not form a diamond, i.e. T and TB are not both from the same level in the 
triangle bintree, TB has to be force-split first. 

The merge operation is the opposite of the split operation. If T and its base neighbour TB are split 
once, then (T, TB) is referred to a mergeable diamond. A merge operation is only defined on mergeable 
diamonds. If a mergeable diamond is merged, the children of T and TB are removed. The mergeable 
diamond (T, TB) is transformed to a simple diamond in the process. 

This is an unnecessary complex concept of split and merge operations that is restricted to diamonds 
and mergeable diamonds. It is possible to redefine the merge operation without any need to consider 
diamonds or mergeable diamonds. Any previously split triangle may be merged so that all its children 
are removed. In order to maintain continuity and avoid cracks, all neighbouring triangles have to be 
merged too. This is a simple recursive process, which is called a force-merge operation. Figure 5.1 
shows a triangle on the left that is to be merged. On the right, all its children have been removed and the 
neighbouring triangles have been forced-merged. 
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Figure 5.1: The force-merge process that merges the children of an arbitrary triangle. 

There are several benefits of the new force-merge operation. First, it is very easy to understand and 
implement. There is no need to introduce concepts like diamonds or mergeable diamonds. Second, it is 
more powerful than the old merge operation. Previously, only triangles that were part of a mergeable 
diamond could be merged. These triangles always had to have two leaf children and a base neighbour 
with two leaf children. No other triangles could be merged. The new merge operation can merge any 
nonleaf triangle in the bintree. Third, any implementation of the new merge operation will run faster, 
since there is no bookkeeping on diamonds and mergeable diamonds. In addition, what previously may 
have taken several merge operations can now be done in one single operation. 

The criticism behind frame-coherent algorithms is that they are very slow if two consecutive frames 
differ too much. Duchaineau et al. solved this problem by relying on a frame-incoherent algorithm 
(Algorithm 4.1) in these cases. With the new force-merge algorithm, there is no need to switch to a 
frame-incoherent algorithm. It will be just as fast as frame-incoherent algorithms in these special cases. 

However, the original priority-computation deferral algorithm is not compatible with this merge 
operation and no alternative has been found. Merging a single triangle involves nothing more than 
removing its children. The force-merge process then merges the children of the three neighbours of the 
triangle in a similar way. 

 
Algorithm Triangle Merge 
Input:  • A split nonleaf triangle T in a triangle bintree. 
Output:  • An updated triangle bintree, where the children of T are merged and all necessary force   
   merges are performed. 
1. set T.LeftChild to invalid 
2. set T.RightChild to invalid 
3. if  T.LeftNeighbour is valid then 
4.  if  T.LeftNeighbour.RightNeighbour = T.LeftChild then 
5.   T.LeftNeighbour.RightNeighbour := T 
6.  else 
7.   Merge(T.LeftNeighbour.Parent) 
8.   T.LeftNeighbour.BaseNeighbour := T 
9.   T.LeftNeighbour.Parent.RightNeighbour := T 
10.  end if 
11. end if 
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12. if  T.RightNeighbour is valid then 
13.  if  T.RightNeighbour.LeftNeighbour = T.RightChild then 
14.   T.RightNeighbour.LeftNeighbour := T 
15.  else 
16.   Merge(T.RightNeighbour.Parent) 
17.   T.RightNeighbour.BaseNeighbour := T 
18.   T.RightNeighbour.Parent.LeftNeighbour := T 
19.  end if 
20. end if 
21. if  T.BaseNeighbour is valid then 
22.  if  T.BaseNeighbour is split then 
23.   Merge(T.BaseNeighbour) 
24.  end if 
25. end if 

Algorithm 5.3:  Force merge. 

5.3 Main Algorithm 
The split and merge algorithms are used by a main algorithm that is called once a frame for each active 
triangle bintree. During the previous frame, a triangle bintree and the corresponding triangulation were 
determined. If the view-dependent variances have not changed too rapidly, the triangle bintree of this 
frame will almost equal the previous frame. Therefore, the main algorithm assumes there is an existing 
triangle bintree for all frames but the first that only needs to be updated due to the view differences from 
the last frame. 

The main algorithm traverses the tree and examines each triangle to decide whether it has been split 
or not. If it has not been split, then if the view-dependent variance exceeds a given limit, it is split and 
the algorithm continues to its children. If it has been split, then if the view-dependent variance is below a 
given limit, it is merged and the traversing stops at that node. 

 
Algorithm Main 
Input:  • The root triangle T in a triangle bintree. 
Output:  • An updated triangle bintree, where all triangles are split, merged, or left as they are. 
1. if not  (T is within the view frustum and T was within the view frustum in the previous frame or 
2. T is outside the view frustum and T was outside the view frustum in the previous frame) then 
3.  if  T is split then 
4.   if  T should be merged then 
5.    Merge(T) 
6.   else 
7.    Main(T.LeftChild) 
8.    Main(T.RightChild) 
9.   end if 
10.  else 
11.   if  T should be split then 
12.    Split(T) 
13.    Main(T.LeftChild) 
14.    Main(T.RightChild) 
15.   end if 
16.  end if 
17. end if 

Algorithm 5.4:  Main. 
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5.4 Implementation Aspects 

5.4.1 Bintree Data Structure 
The following fields are required for the bintree node data structure: 

• Pointer to left neighbour 
• Pointer to right neighbour 
• Pointer to base neighbour 
• Pointer to left child 
• Pointer to right child 
• Indices to left vertex position 
• Indices to right vertex position 
• Indices to apex vertex position 
• Variance 
• View-frustum data 
• Priority-computation deferral data 

The purpose of the left, right, and base neighbour pointers is to support the force-split and force-
merge process. The pointers to the left and right children are necessary for traversing the triangle bintree. 
The indices to the positions for the left, right, and apex vertices in the height field are required when the 
triangles are sent for display. The variance field contains a view-independent precomputed variance, on 
which the screen-space geometric error computation is based. The variance field should only be present 
in the node if the bintree is implemented as an implicit binary tree since it is very inefficient to 
recompute the variance during run-time. Otherwise, the variance field should be stored in another tree. 
The view-frustum data contains the IN, OUT, ALL-IN, and DONT-KNOW flags. The priority-
computation deferral data contains a nonnegative integer that indicates the number of frames that a 
priority computation can be deferred. 

5.4.2 Implicit Binary Tree 
By using an implicit binary tree, the left and right child pointers in the bintree nodes are unnecessary and 
the pointers to the left, right, and base neighbours are replaced by array indices. An implicit tree is also 
faster traversed than a dynamic tree since no pointers have to be dereferenced. In addition, no memory 
has to be allocated or deallocated during dynamic expansion or compression, which speeds up the split 
and merge process. The drawback is that implicit binary trees require a large amount of preallocated 
memory but this is no problem for Ericsson Saab Avionics AB. Therefore, the prototype has been 
developed using implicit binary trees rather than dynamic binary trees. 

Another solution is to compromise between the speed of implicit binary trees and the low memory 
consumption of dynamic binary trees. A tree can be preallocated for all but the last few levels to an 
implicit binary tree. The last levels of the tree are allocated dynamically as needed. Extra speed is gained 
if the memory allocation is handled internally by keeping another preallocated array. The memory in this 
array can then be dynamically used to tree nodes. 

5.4.3 Split and Merge Operations 
Although both the split and merge algorithms are given in recursive forms, they have been implemented 
iteratively to avoid function call overheads. 

5.4.4 Split and Merge Queues 
The split and merge priority queues have not been implemented due to time constraints. However, the 
improved merge operation reduces the need for such queues. The major benefit of priority queues is 
progressive optimisation, which is rarely necessary to use. 
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5.4.5 View-Frustum Culling 
The view-frustum culling has been implemented almost as described by Duchaineau et al. The only 
difference is that no node inherits the parameters of the parent. This has been done because of time 
constraints but it only reduces the frame rate slightly. 

As can be seen in Chapter 6, the overhead of computing the six clipping planes for each frame is 
compensated by the reduction of triangles. 

5.4.6 Triangle Count 
A desired number of triangles per frame can be achieved by dynamically changing a priority cut-off 
value. Normally a triangle is split during frame f only if its view-dependent variance exceeds a given 
floating-point number εf. The number of created triangles c is therefore dependent of εf. If the desired 
number of triangles d differs from c, a new value of ε can be recomputed by the equation 

 1−= ff d

c εε  (5.1) 

If the view position remains unchanged, Equation 5.1 will be computed iteratively and converge to a 
value that produces the desired triangle count. 
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6 RESULTS 
The prototype generates ROAM terrain at high speeds. In Figure 6.1, the triangles close to the observer 
are significantly smaller than those triangles that are farther away. The sizes of the triangles’ projection 
to the screen are still the same. The terrain has been generated from a height map of 129×129 height 
samples. 1200 triangles are being rendered each frame, which have reduced almost all visible popping 
artefacts. The total number triangles present in the bintree is however much larger. The view-frustum 
culling removes most of the triangles. 

 

Figure 6.1: ROAM generated terrain. 

The characteristics of ROAM are apparent in both Figure 6.1 and Figure 6.2. All triangles are right 
isosceles and the pattern by which the triangles are split and merged is visible. There are no cracks 
present and the level of detail is continuous.  

 

Figure 6.2: Top view of ROAM generated terrain. 
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6.1 Performance 
Performance measurements of the ROAM prototype are made on a Dell Dimension XPS T600 with an 
Intel 600 MHz Pentium III processor, 256 MB of memory, and an nVidia TNT2 M64 graphics card 
under Microsoft Windows 98. 

The source code has not been optimised. Triangle stripping is not implemented. Instead, vertex 
arrays are created during every frame, which decreases the frame rate. The view-frustum culling is not 
identical to the one by Duchaineau et al. The differences are explained in Section 5.4.5. 

6.1.1 Frame Rates 
Table 6.1 compares the frame rates at different speeds of the observer. 

 
Speed Frame rate (fps) Triangles 

Standing still 105 1230 
Medium speed 97 1190 
High speed 91 1160 

Table 6.1: Frame rate as function of speed. A height map of 129*129 height samples 
has been used. 

As can be seen in Table 6.1, the frame rate drops at higher speed. This is a result from the exploitation of 
frame-to-frame coherence. The more triangle changes there are per frame, the more computations are 
required by ROAM. 
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Figure 6.3: Frame rates with and without frame-to-frame coherence and view-frustum 
culling. ROAM displays the frame rate of the prototype with all optimisation methods 
included. The second series has turned off the view-frustum culling and the third does 
not exploit frame-to-frame coherence. 
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The view-frustum culling process removes all triangles that are not visible to the observer. Time is 
saved by not including the triangles that are outside the view frustum in the vertex array and sending 
them to the graphics pipeline. However, including view-frustum culling requires the computation of six 
clipping planes and tests for all vertices of each triangle against all six clipping planes. Performance 
results have shown that the computation of the six clipping planes require only 0.1% of the total view-
frustum culling process. Figure 6.3 shows the frame rates with and without view-frustum culling. 

If frame coherence is not exploited, the only elementary triangle operation that is necessary is the 
split operation. A frame-incoherent version of ROAM resets the triangle bintree every frame and splits 
the triangles until the maximum error of all triangles is below a given threshold. Figure 6.3 shows the 
frame-rate differences between a frame-coherent and a frame-incoherent version. 

There is a significant difference in frame rate between a frame-to-frame coherent algorithm and an 
incoherent algorithm at low triangle counts. The frame-to-frame coherent algorithm is three times as fast 
as the incoherent algorithm at 2500 triangles per frame. The difference decreases at higher triangle 
counts. This is simply because the graphics pipeline requires more of the frame time to render all 
triangles. 

View-frustum culling increase the frame rate by 35% at 2500 triangles per frame. The difference 
decreases at lower triangle counts since the overhead of computing six clipping planes is not 
compensated by the reduction of triangles. The difference does also decrease at higher triangle counts by 
the same reason as the difference between a frame-to-frame algorithm and an incoherent algorithm 
decreases. The graphics pipeline requires most of the frame time to render a large number of triangles. 

6.1.2 Function Timing 
The run time can be divided into three steps. The first step is performed by the ROAM algorithm, which 
executes all triangle splits and merges including view-frustum culling and priority computation. The 
second step generates the vertex arrays, while the third step renders the triangles. Table 6.2 shows the 
run-time per frame of these three steps. 

 
Functions Time/frame (ms) 

ROAM 11.8 
- Triangle split and merges - 1.4 
- View-frustum culling - 8.5 
- Priority computation - 1.9 
Vertex-array generation 0.9 
Triangle rendering 2.9 
Other 1.3 

Total 16.9 

Table 6.2: Time spent on the ROAM algorithm, vertex-array generation, and triangle 
rendering. 

The other functions include the I/O and window management in the visualisation engine. Although the 
view-frustum culling requires 50% of the total frame time, it increases the frame rate as indicated by 
Figure 6.3. Duchaineau et al. have reached a view-frustum culling implementation that only requires 
33% of the ROAM algorithm. The difference between the implementations is the reason behind the 
results. Optimising the view-frustum culling to a level that is equivalent to Duchaineau. et al. will 
increase the frame rates by 41%. Including triangle stripping and priority-computation deferral will 
increase the frame rates further. 
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7 SUMMARY AND CONCLUSION 
Terrain generators have been surveyed and categorised into six groups. Several terrain generation 
algorithms have been evaluated and two of them, view-dependent progressive meshes (VDPM) and real-
time optimally adapting meshes (ROAM), have been discussed further. VDPM generates general 
triangulated irregular networks, while ROAM generates networks that only consist of right-isosceles 
triangles. A prototype based on ROAM has been implemented, which shows good results although much 
optimisation work remains. 

Compared to traditional terrain models, real-time terrain generators can provide drastic time savings 
at virtually no cost. Terrain models will take weeks to produce while a height map can be created in a 
few days. If real map data is used, time and cost savings are even better. T3SIM will use digital height 
and map data to produce terrain in real time. Another important benefit is the support of continuous level 
of detail. Traditional discrete levels of detail suffer from visual artefacts when switching from one level 
of detail to another. Several methods have been proposed to reduce the artefacts, but none has proven 
sufficient. Continuous level of detail changes the number of triangles and the sizes of the triangles 
continuously and removes any visual artefacts. A third advantage of terrain generators is that the terrain 
can be easily altered in real time. 

ROAM has shown to generate a triangle mesh faster than VDPM. ROAM only needs to morph one 
vertex per triangle while VDPM needs to morph two. The validity of a ROAM elementary mesh 
operation is faster evaluated. ROAM avoids slivers automatically, while VDPM need extra computations 
to guarantee their absence. In addition, VDPM always introduce temporary slivers during vertex 
morphing. However, the largest reason for choosing ROAM instead of VDPM is that its time complexity 
is proportional to the number of triangle changes while VDPM time complexity it proportional to the full 
output mesh size. 

A new merge operation has proven to simplify the frame-coherent split and merge process. It can 
merge the children of any nonleaf triangle. Since the original ROAM time complexity is proportional to 
the number of triangle changes per frame, frames that have to make many splits and merges will need 
longer frame times. These cases commonly occur when the observer travels fast or makes a quick turn. 
In future versions of T3SIM, where air-combat simulations within visual range will be included, aircrafts 
will fly on low altitudes at high velocities. The new merge operation is suitable for these situations, since 
it decreases the frame times of incoherent frames. 

The incremental view-frustum culling increases frame rates, and is therefore an important part of 
ROAM. It is necessary to include in order to achieve high frame rates. 

Hand-modelled terrain is not scalable. There will be a continuous need for increasing the level of 
detail of the terrain when hardware performance improves. On the other hand, ROAM and all other 
terrain-rendering algorithms are scalable and will improve the terrain with higher processor speeds. 

Thus, real-time terrain generators that support continuous level of detail are superior to traditionally 
modelled terrain. ROAM has shown to be the fastest of all current terrain-rendering algorithms. T3SIM 
will therefore gain from using a product that is based on ROAM and map data. 

Future work includes implementing the split and merge priority queues for progressive optimisation 
and exploit triangle stripping instead of vertex arrays. Incorporating priority-computation deferral, 
backface culling, and occlusion culling would reduce triangle counts further. 
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APPENDIX A: COMPUTATIONAL GEOMETRY CONCEPTS 

A.1 Quadtree 
A quadtree is a rooted quaternary tree that hierarchically subdivides a rectangular area containing a set 
of points. For the purpose of terrain rendering based on a regular square grid of height samples, the 
rectangular area is restricted to a square and the set of points is restricted to a regular grid of (n+1)2 
equally spaced height samples. Usually, n = 2k, for some nonnegative integer k. 

The root node corresponds to the whole square, while its four children each correspond to a quadrant 
of the square. The definition is recursive, i.e. each internal node of the quadtree corresponds to a square 
region, while the four children each correspond to a quadrant of the parent square. Every internal node is 
labelled NE, NW, SW, and SE, to indicate the specific square they represent. 

The construction of a quadtree takes Ο(n2) time and uses Ο(n2) space, i.e. it is linear in the number 
of input points [3, 27]. 

A quadtree is suitable for simple structure- and view-dependent multiresolution triangulations of 
terrain. Low-level nodes correspond to a rough triangulation, while high-level nodes correspond to finer 
triangulations. A quadtree can be constructed off-line, but it is traversed for each frame. The recursion is 
stopped as soon as a suitable level of detail is found. An example of a quadtree is shown in Figure A.1. 
Each square is triangulated according to a predetermined scheme. 

 

Figure A.1: A quadtree with higher resolution at regions down to the right. 

The generalisation of a quadtree into three dimensions is known as an octree, of which each node 
corresponds to a cubic region. 

A.2 Kd-tree 
Given a finite set of real numbers P, a common problem is to find which elements lie within a specified 
interval. This is known as an orthogonal range query. A straightforward solution is to check each point 
against the interval, resulting in a linear time algorithm. A faster solution would be to store the numbers 
in a simple binary search tree, which reduces the time complexity to Ο(logn + k), where n is the number 
of elements in P and k is the number of retrieved points [3]. 

An extension to this problem is, given a finite set of points P in the plane, to find all points within a 
specified rectangle. The points can be height samples in a terrain-rendering algorithm or vertices in a 
triangle mesh. 
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A kd-tree, known as a multidimensional binary tree, is also stored as a binary search tree, but it is 
interpreted differently. For the application described above, each internal node stores a line splitting the 
plane into two parts. These lines are orthogonal, but normally only considered vertical and horizontal. 
The root node contains a vertical line through the median x-coordinate of the points in P, which splits 
the plane into a left and right region. The left child node contains a horizontal line through the median y-
coordinate of the points in the left region, which splits the left region into an upper and lower region. 
Similarly, the right child node contains a horizontal line through the median y-coordinate of the points in 
the right region, which splits the right region into an upper and lower region. This process continues 
splitting the plane with vertical lines at nodes of even depth and horizontal lines at nodes of odd depth 
[3, 27]. Figure A.2 illustrates an example of plane subdivision and the corresponding kd-tree. 
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Figure A.2: a) A plane subdivision. b) The corresponding kd-tree. 

Originally, k stood for the dimension of the tree, which in this case is two. Nowadays, however, they 
are called 2-dimensional kd-trees. 

The retrieval time complexity of a kd-tree is of Ο( kn + ), where n is the number of points in the 
plane and k is the number of retrieved points. It uses Ο(n) storage and can be constructed in Ο(nlogn) 
time. The retrieval time is more important, since it is a real-time process, as opposed to the construction 
time. 

A.3 Range tree 
A range tree is a multi-level binary tree that improves the retrieval time of kd-trees. A kd-tree alternates 
the splitting process on x- and y-coordinates. A range tree, on the other hand, controls the splitting 
process by storing subtrees at each node. The query of finding all points with an x-coordinate within a 
specified range can be done in time complexity Ο(logn + k). Since the range is continuous, the output 
points belongs to a number of canonical subsets, each of which is associated to a node and contains all 
points in the subtree of that node. For example, the canonical subset of the root node contains all points, 
while the canonical subset of a leaf contains only the point associated with that leaf [3]. 

Each node in the tree contains its associated canonical subset stored as a balanced binary search tree 
on the y-coordinates of the points. The main tree is called the first-level tree, while the canonical-subset 
trees are known as second-level trees. A range tree can easily be extended to include more dimensions. 

Although this requires Ο(nlogn) storage, it improves retrieval time to Ο(log2n + k). A technique 
known as fractional cascading can improve retrieval time further to Ο (logn + k). Thus, range trees 
improve performance over kd-trees at the cost of increased storage. 

A.4 Voronoi Diagram 
The Voronoi diagram can be defined for any number of dimensions, but since terrain-rendering 
algorithms are based on planar input, this short summary is restricted to the two-dimensional case. The 
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Voronoi diagram of a finite set of two-dimensional points P = {p1, p2, ..., pn} ⊆ ℜ2 is a subdivision V = 
{ v1, v2, ..., vn} of ℜ2 with p ∈ vi implicates 

 jippppp jji ≠∈∀−<−  ,
22

P , (A.1) 

i.e. each set vi ∈ V consists of all points that is closer to pi than any other point in P. The Voronoi 
diagram of P is denoted Vor(P). Each set vi in V is called a Voronoi cell or a Voronoi polygon, and is 
denoted V(pi). The points in P are called sites [3, 27]. A set of sites and their corresponding Voronoi 
diagram is shown in Figure A.3. 

A bisector of two sites p, q ∈ P is defined as the perpendicular line of the straight line passing 
through both p and q. This bisector splits the plane into two halves, of which one contains p and one 
contains q. The distance from the bisector to p equals the distance to q. Define h to be a function by 
setting h(u, v) to the open half-plane defined by the bisector of u and v that contains u. This yields r ∈ 
h(u, v) if and only if 
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i.e. V(pi) is the open convex polygonal region defined by the intersection of n−1 half-planes as illustrated 
in Figure A.3. The edges of the polygonal region either are line segments, half lines, or full lines. If the 
region is bounded, it consists only of line segments, while if it is unbounded, it also consists of at least 
two half-lines. If all sites in P are collinear, all edges are full lines. 

(a) (b)
 

Figure A.3: a) The Voronoi region for a point is the intersection of all halfplanes. b) A 
Voronoi diagram. 

Given a point q ∈ ℜ2, a largest empty circle of q with respect to P is the largest circle centred at q 
that does not contain any points from P in its interior. Given this definition, it can be proven that a point 
q is a vertex of Vor(P) if and only if the largest empty circle of q with respect to P contains three or 
more sites on its boundary. Also, the bisector between two sites u and v in P contains an edge of Vor(P) 
if and only if there is a point q ∈ ℜ2 such that the largest empty circle of q with respect to P contains 
both u and v on its boundary but no other sites. 
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The Voronoi diagram can be computed by a plane sweep algorithm, known as Fortune’s algorithm, 
in Ο(nlogn) time, which has been proven to be optimal [3, 27]. 

A.5 Polygon Triangulation 
The triangulation of a polygon can be computed by a large number of algorithms. In 1990, B. Chazelle 
developed a linear time algorithm [5]. This section presents a simpler Ο(nlogn) algorithm that 
triangulates a simple polygon with n vertices. A simple polygon is a polygon that does not intersect 
itself. It is easily proved that every simple polygon can be triangulated to n − 2 triangles [3]. 

Given a simple polygon P with n vertices, the algorithm creates a triangulation during two steps. The 
first step partitions the polygon into a set of monotone pieces, while the other triangulates the pieces. 

A.5.1 Partitioning a Simple Polygon into Monotone Pieces 
A simple polygon is called monotone with respect to a line l if for any other line l´, perpendicular to l, 
the intersection of the polygon with l´ is connected, i.e. the intersection is a line, a point, or empty. In 
particular, a simple polygon is called y-monotone if it is monotone with respect to the y-axis. 

Denote the y-coordinate of a point p by py. Similarly, denote the x-coordinate by px. A point p is 
below another point q if py < qy or py = qy and px > qx. A point p is above a point q if q is below p. 

The vertices of a polygon is distinguished into five categories: 
1. A vertex v is a start vertex if its two neighbours lie below it and the interior angle at v is less 

than π. 
2. A vertex v is a split vertex if its two neighbours lie below it and the interior angle at v is greater 

than π. 
3. A vertex v is an end vertex if its two neighbours lie above it and the interior angle at v is less 

than π. 
4. A vertex v is a merge vertex if its two neighbours lie above it and the interior angle at v is greater 

than π. 
5. A vertex v is a regular vertex if it is none of the above, i.e. v has one neighbour lying above and 

the other below. 
 
The first four types, i.e. start, split, end, and merge vertices, are called turn vertices. A polygon with 
vertices from all five categories is shown in Figure A.4 (a). 

De Berg et al. [3] have shown that a polygon is y-monotone if and only if it has neither split nor 
merge vertices. Thus, all split and merge vertices have to be removed to obtain a partition of monotone 
polygon pieces. 

The split vertices are removed by sweeping from the topmost vertex down to the lowest. If a split 
vertex v is found, let ej be the edge immediately to the left of v and ek be the edge immediately to the 
right of v. Connect v to the lowest vertex between ej and ek, but above v, or, if no such vertex exist, 
connect v to the upper vertex neighbour of ej. 

The merge vertices are removed in a similar matter. If a merge vertex u is found, let ej be the edge 
immediately to the left of u and ek be the edge immediately to the right of u, as before. Connect u to the 
highest vertex between ej and ek, but below u. If no such vertices exist, connect u to the lower vertex 
neighbour of ej. 

Removing all split and merge vertices partitions P into a set of monotone polygons. The time 
complexity of this algorithm is Ο(nlogn), while the space complexity is linear. 

A.5.2 Triangulating a Monotone Polygon 
Assume that P is strictly y-monotone, i.e. y-monotone without any horizontal edges. Construct two 
chains, one consisting of all the vertices on the left side of P sorted from the top down and the other 
consisting of all the vertices on the right side, also sorted from the top down. Construct a sequence u1, u2, 
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..., un consisting of all vertices sorted by decreasing y-coordinate. If two vertices have the same y-
coordinate, the leftmost vertex precedes the other. Finally, use a stack S to store the vertices. The 
algorithm is straightforward: 

Push the first two vertices in the sequence onto S. Check each vertex ui left in the sequence to see if 
it is on the other chain than the vertex on top of S. If so, pop all vertices from S and insert an edge from 
ui to all popped vertices, except the last one. Push back the vertices ui and ui−1 onto the stack. 

If the vertex on top of S is on the same chain as ui, then pop all vertices in S. Insert edges between ui 
and all popped vertices except for the first, as long as they are inside P. Push back the vertex ui and the 
last popped vertex onto S. 
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Figure A.4: a) Start, regular, split, merge, and end vertices. b) Partitioning a simple 
polygon into monotone polygons. c) Triangulating the upper monotone polygon. d) 
Triangulating both monotone polygons. 

The last step is to add edges from un to all vertices in the stack, except the first and last one. This 
produces a triangulation of P in linear time. 

Thus, this composite algorithm for triangulating an arbitrary simple polygon takes Ο(nlogn) time. 

A.6 Delaunay Triangulation 
The dual graph of the Voronoi diagram is the Delaunay graph [27]. Given a set of points P in the plane, 
the Delaunay triangulation creates a triangle mesh from the Delaunay graph that maximises the 
minimum angle of all triangles. Small angles cause slivers, which in turn can introduce large 
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approximation errors of terrain and aliasing problems for texture maps. Since the Delaunay triangulation 
maximises the minimum angle of all triangles, it generally produces triangle meshes of better visual 
quality than other methods. 

Let T be a triangulation of a set of points P in the plane consisting of n triangles. Furthermore, let 
A(T) denote the angle-vector (α1, α2, …, α3n) containing all 3n angles of the triangles in T, sorted by 
increasing value. Let T  ́be another triangulation of P with angle-vector A(T )́ = (α'1, α'2, …, α'3n). A(T) 
is defined to be larger than A(T )́, denoted A(T) > A(T )́, if there is an i ∈ Z3n such that αj = α'j for all j < 
i and αi > α'i. Other relational properties follow similarly. 

A triangulation is called angle-optimal if A(T) ≥ A(T )́ for all triangulations T  ́of P [3]. A Delaunay 
triangulation will be shown an angle-optimal triangulation. 

Consider a triangulation T of four points pi, pj, pk, and pl, with triangles (pi, pj, pl) and (pj, pk, pl) and 
angles v1, v2, v3, v4, v5, and v6, as in Figure A.5. Let e be an edge between pj and pl Construct a new 
triangulation T  ́by flipping e to e´ between pi and pk, which changes the angles to v'1, v'2, v'3, v'4, v'5, and 
v'6. The edge e is called illegal if 
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This definition applies to all non-boundary edges. A legal triangulation is a triangulation that does not 
contain any illegal edges. 
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Figure A.5: An edge flip operation. 

Given a Voronoi diagram Vor(P) of P, the Delaunay graph of P, denoted DG(P), has a vertex at 
each point in P and edges between any two vertices whose corresponding Voronoi cells in Vor(P) are 
adjacent [27]. Figure A.6 (b) shows a Delaunay triangulation of the point set in Figure A.3 (b). 

A finite set of points P ⊆ ℜ2 is in general position if there is no circle whose boundary contains four 
points in P. If P is in general position, then all vertices in Vor(P) is of degree three, and as a 
consequence, all bounded regions in DG(P) are triangles. In this case, the triangulation of P with edges 
between every pair of points that are adjacent in DG(P) is known as the Delaunay triangulation of P.  If 
P is not in general position, then the Delaunay graph will contain a convex polygon with at least four 
vertices. The Delaunay triangulation is extended to include triangulations of non-general point sets, 
where the polygons are triangulated. The triangulation of a polygon was covered Section A.5. Thus, a 
Delaunay triangulation of a set of points P is unique if and only if P is in general position [3]. 

There are three important properties of the Delaunay triangulation. Let T be a triangulation of a set 
of planar points P. 

1. T is a Delaunay triangulation if and only if the circumcircle of any triangle in T does not contain 
a point of P in its interior. 

2. T is legal if and only if T is a Delaunay triangulation of P. 
3. If T is a Delaunay triangulation of P then it maximises the minimum angle over all triangulations 

of P. 
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(a) (b) (c)
 

Figure A.6: a) An arbitrary triangulation of the point set in Figure A.3 b). (b) A 
Delaunay triangulation of the same point set. c) The underlying Voronoi diagram 
shows that the Delaunay triangulation contains an edge between any two adjacent 
sites. 

There are several methods for computing a Delaunay triangulation of a set of planar points P. 
Blekken et al. [4] divide the methods into five categories: 

• Two-step algorithms are based on arbitrary triangulations but rearrange them into Delaunay 
triangulations. 

• Incremental algorithms are based on Delaunay triangulation on a subset of P, but refine the 
triangulation while maintaining the Delaunay property when inserting new points. 

• Divide-and-conquer algorithms construct the Delaunay triangulation by recursively splitting the 
point set into two halves, constructing Delaunay triangulations for each half, and merging the 
halves while maintaining the Delaunay property. 

• Sweep-line algorithms compute the Voronoi diagram and transform it into a Delaunay 
triangulation using a sweep line. 

• Three-dimensional algorithms compute the three-dimensional convex hull of the point set and 
project the lower portion onto the x-y plane. 

 

There are two extensions to Delaunay triangulation. Constrained Delaunay triangulation is based on 
a set of points P and a set of constrained edges E and is constructed by ensuring that the circumcircle of 
each triangle does not contain any point of P that is visible from all three vertices of the triangle. A point 
p1 is visible from a point p2 if the straight line between them does not cross the interior of any of the 
edges in E. A constrained Delaunay triangulation does not necessarily fulfil the Delaunay property. 

Conforming Delaunay triangulation improves the constrained Delaunay triangulation by adding 
more points into P in order to fulfil the Delaunay property. 

A.7 Data-Dependent Triangulation 
While Delaunay triangulation uses two-dimensional information only, data-dependent triangulation 
algorithms achieve more accurate approximations of the triangle meshes by considering the topology of 
the terrain [10]. However, they generally introduce slivers, which Delaunay triangulation avoids by 
maximising the minimum angle of all triangles. Slivers can introduce aliasing effects in texture maps, 
which reduce the visual quality of the terrain. 

Several papers survey many different data-dependent triangulation algorithms [1, 10, 12]. An 
incremental Delaunay triangulation can be generalised to a data-dependent triangulation algorithm by 
iteratively flipping the edges of the Delaunay triangulation. An edge is flipped if the new edge 
approximates the terrain better than the previous. This introduces illegal edges and destroys the 
Delaunay property in favour of error reduction. What triangulation algorithm that should be chosen 
depends on the application and priority of visual quality and approximation error. 
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APPENDIX B: USER MANUAL 
The prototype, roam.exe, can be executed on any IBM compatible PC with an Intel Pentium III 
processor running Microsoft Windows 95 or 98. The following three files must be copied to 
C:\Windows\System\: glut.dll, glu.dll, and opengl32.dll. 

Both the keyboard and the mouse can control the observer. 

 

Key Action 

0 Return to start position. 

1 Accelerate. 

2 Turn up. 

3 Decelerate. 

4 Rotate to the left. 

5 Stop. 

6 Rotate to the right. 

7 Turn left. 

8 Turn down. 

9 Turn right. 

Esc Exit 

Table B.1: The keyboard control keys for the prototype. 

By holding down the left or right mouse button and drawing the mouse at one of the four directions 
controls the observer according to Table B.2: 

 

Mouse button Mouse direction Action 

Up Turn down. 

Down Turn up. 

Left Rotate to the left. 

Left 

Right Rotate to the right. 

Up Accelerate. Right 

Down Decelerate. 

Table B.2: The mouse control for the prototype 
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APPENDIX C: GLOSSARY 

Backface culling The removal of primitives facing away from the observer, i.e. 
those on the backside of an object. 

  

Data-dependent triangulation A set triangulation methods that use the heights and other 
information of a set of vertices to achieve a more accurate 
triangulation than Delaunay triangulation. 

  

Decimation methods Triangulation simplification methods that simplify an initial 
triangulation containing all data points during multiple passes. 
During each pass, a vertex, edge, or triangle is removed and the 
mesh is retriangulated. 

  

Delaunay triangulation A triangulation method that maximises the minimal angle of all 
triangles. Constrained Delaunay triangulation is an extension to 
Delaunay triangulation that includes a specified set of edges. 
Conforming Delaunay triangulation is an extension to 
constrained Delaunay triangulation, which adds vertices to 
guarantee the Delaunay property. 

  

Feature A vertex that contains important information about the terrain, 
such as peaks, ridges and valleys. Also known as a critical 
point. 

  

Feature methods Triangulation simplification methods whose triangulations are 
based on features only. Constrained Delaunay triangulation is 
often used if certain edges have to be included. 

  

Height field A two-dimensional regular grid of equally spaced height 
samples. 

  

Hierarchical subdivision methods Triangulation simplification methods that divide the terrain 
recursively into regions to form a hierarchical tree, in which 
each node represents a specific region of the terrain. The 
children of a node together represent the same region as the 
parent, but at higher level of detail. 

  

Level of detail (LOD) Discrete level of detail is a method for displaying the same 
object at different levels of detail from different distances. 
Continuous level of detail is a method of computing the correct 
level of detail for each region of an object. Different regions of 
the object are displayed at different levels of detail 
simultaneously. 

  

Kd-tree A binary tree that recursively subdivides a space. Each node of 
a k-dimensional kd-tree divides a k-dimensional space by a 
(k−1)-dimensional plane. Two such planes in two nodes of level 
i and j are orthogonal if i ≠ j. 

  

Multiresolution modelling The modelling of an object at different discrete levels of detail. 
  

Occlusion culling The removal of primitives occluded by other primitives and 
therefore not visible to the observer. 

  

Optimal methods Triangulation methods that find the optimal approximation of a 
grid. 

  

Polygon triangulation The division of a polygon into a triangle mesh. 
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Popping An aliasing artefact appearing when changing from one discrete 
level of detail to another. 

  

Progressive Meshes (PM) A continuous level-of-detail method for view-dependent terrain 
rendering. 

  

Quadtree A quaternary tree that recursively divides an area to four equal 
regions at each node. 

  

Range tree A multi-dimensional binary tree. Each node contains another 
binary tree. 

  

Real-time Optimally Adapting 
Meshes (ROAM) 

A continuous level-of-detail method for view-dependent terrain 
rendering. 

  

Refinement methods Triangulation simplification methods that start with a coarse 
approximation and refine it during multiple passes until the 
appropriate amount of triangles is found or until an error goes 
below a certain limit. 

  

Regular grid methods Triangulation simplification methods that only use every kth 
row and column of the height field as vertex set of the 
triangulation. 

  

Sliver A triangle with at least one very small angle. 
  

T3SIM A flight simulator that is developed by Ericsson Saab Avionics 
AB for tactical training in real-time man-in-the-loop air-combat 
simulations. 

  

Terrain The graph of a continuous function f:ℜ2→ℜℜ. 
  

Tile A square area in a terrain that is represented by several levels of 
detail. 

  

Triangle fan/strip A set of triangles adjacent so that every new triangle adds one 
new vertex. For n triangles, only n+2 vertices are necessary. 
Long triangle strips or fans reduce rendering time. The 
difference between a triangle strip and a triangle fan is the 
composition of triangles. 

  

Triangle mesh A mesh consisting only of triangles such that each edge is 
adjacent to at most two triangles. 

  

Triangulated irregular network 
(TIN) 

A triangle mesh that consists of non-overlapping variable-sized 
triangles. 

  

View-frustum culling The removal of all primitives outside the view frustum, i.e. a 
bounded volume containing the observer’s field of view. 

  

Voronoi diagram Given a set of points P in the plane, a Voronoi diagram is a 
subdivision of the plane into regions such that each region is 
associated to exactly one point in P and contains all points in 
the plane that is closer to that point than any other. 

  

Wedgie A volume that extends vertically above and below a triangle 
with a thickness defined by children triangles. 

 


